Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Linear codes on posets with extension property

Texto completo
Autor(es):
Barg, Alexander [1, 2, 3] ; Felix, Luciano V. [4, 5] ; Firer, Marcelo [4] ; Spreafico, Marcos V. P. [4, 6]
Número total de Autores: 4
Afiliação do(s) autor(es):
[1] Univ Maryland, Dept Elect & Comp Engn, College Pk, MD 20742 - USA
[2] Univ Maryland, Syst Res Inst, College Pk, MD 20742 - USA
[3] Russian Acad Sci, Inst Problems Informat Transmiss, Moscow - Russia
[4] Univ Estadual Campinas, IMECC UNICAMP, BR-13083859 Campinas, SP - Brazil
[5] Univ Fed Rural Rio de Janeiro, ICE UFRRJ, BR-23890000 Seropedica, RJ - Brazil
[6] Univ Fed Mato Grosso do Sul, INMA UFMS, BR-79070900 Campo Grande, RS - Brazil
Número total de Afiliações: 6
Tipo de documento: Artigo Científico
Fonte: DISCRETE MATHEMATICS; v. 317, p. 1-13, FEB 28 2014.
Citações Web of Science: 5
Resumo

We investigate linear and additive codes in partially ordered Hamming-like spaces that satisfy the extension property, meaning that automorphisms of ideals extend to automorphisms of the poset. The codes are naturally described in terms of translation association schemes that originate from the groups of linear isometries of the space. We address questions of duality and invariants of codes, establishing a connection between the dual association scheme and the scheme defined on the dual poset (they are isomorphic if and only if the poset is self-dual). We further discuss invariants that play the role of weight enumerators of codes in the poset case. In the case of regular rooted trees such invariants are linked to the classical problem of tree isomorphism. We also study the question of whether these invariants are preserved under standard operations on posets such as the ordinal sum and the like. (C) 2013 Published by Elsevier B.V. (AU)

Processo FAPESP: 07/56052-8 - Teoria da informação e códigos
Beneficiário:Sueli Irene Rodrigues Costa
Modalidade de apoio: Auxílio à Pesquisa - Temático