Extensões do problema de Noether e conjectura de Gelfand-Kirillov para certas clas...
Estudo de problemas de otimização combinatória teóricos e aplicados em cenários reais
Texto completo | |
Autor(es): |
Número total de Autores: 2
|
Afiliação do(s) autor(es): | [1] Univ Sao Paulo, Dept Math, Sao Paulo - Brazil
[2] Max Planck Inst Math, D-53111 Bonn - Germany
[3] Univ Calif Riverside, Dept Math, Riverside, CA 92521 - USA
Número total de Afiliações: 3
|
Tipo de documento: | Artigo Científico |
Fonte: | MATHEMATISCHE ZEITSCHRIFT; v. 276, n. 1-2, p. 1-37, FEB 2014. |
Citações Web of Science: | 5 |
Resumo | |
It is shown that the -difference Noether problem for all classical Weyl groups has a positive solution, simultaneously generalizing well known results on multisymmetric functions of Mattuck (Proc Am Math Soc 19:764-765, 1968) and Miyata (Nagoya Math J 41:69-73, 1971) in the case , and -deforming the noncommutative Noether problem for the symmetric group (Futorny et al. in Adv Math 223:773-796, 2010). It is also shown that the quantum Gelfand-Kirillov conjecture for (for a generic ) follows from the positive solution of the -difference Noether problem for the Weyl group of type . The proof is based on the theory of Galois rings (Futorny and Ovsienko in J Algebra 324:598-630, 2010). From here we obtain a proof of the quantum Gelfand-Kirillov conjecture for , and for a certain extension of . Previously, the case of was shown by Fauquant-Millet (J Algebra 218:93-116, 1999) and by Alev and Dumas (J Algebra 170:229-265, 1994) (for ). Moreover, we give an explicit description of the skew fields of fractions for and which generalizes the results of Alev and Dumas (J Algebra 170:229-265, 1994). (AU) | |
Processo FAPESP: | 10/50347-9 - Álgebras, representações e aplicações |
Beneficiário: | Ivan Chestakov |
Modalidade de apoio: | Auxílio à Pesquisa - Temático |