Oriented Image Foresting Transform Segmentation by... - BV FAPESP
Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Oriented Image Foresting Transform Segmentation by Seed Competition

Texto completo
Autor(es):
Miranda, Paulo A. V. [1] ; Mansilla, Lucy A. C. [1]
Número total de Autores: 2
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Inst Math & Stat, Dept Comp Sci, BR-05508090 Sao Paulo - Brazil
Número total de Afiliações: 1
Tipo de documento: Artigo Científico
Fonte: IEEE Transactions on Image Processing; v. 23, n. 1, p. 389-398, JAN 2014.
Citações Web of Science: 15
Resumo

Seed-based methods for region-based image segmentation are known to provide satisfactory results for several applications, being usually easy to extend to multidimensional images. However, while boundary-based methods like live wire can easily incorporate a preferred boundary orientation, region-based methods are usually conceived for undirected graphs, and do not resolve well between boundaries with opposite orientations. This motivated researchers to investigate extensions for some region-based frameworks, seeking to better solve oriented transitions. In this same spirit, we discuss how to incorporate this orientation information in a region-based approach called ``IFT segmentation by seed competition{''} by exploring digraphs. We give direct proof for the optimality of the proposed extensions in terms of energy functions associated with the cuts. To stress these theoretical results, we also present an experimental evaluation that shows the obtained gains in accuracy for some 2D and 3D data sets of medical images. (AU)

Processo FAPESP: 11/50761-2 - Modelos e métodos de e-Science para ciências da vida e agrárias
Beneficiário:Roberto Marcondes Cesar Junior
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 12/06911-2 - Transformada imagem-floresta com funções de conexidade não suaves e suas aplicações na segmentação de imagens médicas e naturais com acentuada heterogeneidade
Beneficiário:Lucy Alsina Choque Mansilla
Modalidade de apoio: Bolsas no Brasil - Mestrado