Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Univariate vs. Multivariate Calibration in the Quantification of Carbamazepine in Tablets by Raman Spectroscopy using PCA as Spectral Selection Tool

Autor(es):
de Menezes, Daniela R. [1] ; Carneiro, Renato L. [2]
Número total de Autores: 2
Afiliação do(s) autor(es):
[1] Univ Fed Sao Carlos, UFSCar, CCET, Dept Chem Engn, BR-13565905 Sao Carlos, SP - Brazil
[2] Univ Fed Sao Carlos, UFSCar, CCET, Dept Chem, BR-13565905 Sao Carlos, SP - Brazil
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: Latin American Journal of Pharmacy; v. 31, n. 9, p. 1341-1347, 2012.
Citações Web of Science: 1
Resumo

When Raman spectroscopy is employed to quantify pharmaceutical compounds, one typically resorts to the multivariate calibration, in order to minimize errors arising from the scattered signal fluctuation. However, molecules of traditional excipients used in tablet formulation emit low Raman scattering, allowing the use of univariate calibration, which is simpler to achieve. In this study, the quantification of carbamazepine in tablets by Raman spectroscopy was performed using univariate and multivariate calibration. To minimize the problem of signal intensity variation, the most representative replicates were selected by Principal Component Analysis (PCA). Univariate and multivariate calibration curves were obtained by simple linear regression and Partial Least Squares (PLS), respectively, resulting in Root Mean Square Errors of Cross Validation (RMSECV) of 4.24 and 3.42 %. The results of this procedure was satisfactory and indicates that with the aid of appropriate numerical treatment, it is possible to perform a simple and reliable method of quantification even when using the univariate approach. (AU)

Processo FAPESP: 10/16520-5 - Aplicação de métodos quimiométricos de calibração e resolução multivariada de curvas em espectroscopia Raman para análise qualitativa, quantitativa e de polimorfismo em fármacos
Beneficiário:Renato Lajarim Carneiro
Modalidade de apoio: Auxílio à Pesquisa - Regular