Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Umbilical Submanifolds of S-n x R

Texto completo
Autor(es):
Mendonca, Bruno [1] ; Tojeiro, Ruy [2]
Número total de Autores: 2
Afiliação do(s) autor(es):
[1] Univ Estadual Londrina, BR-86051980 Londrina - Brazil
[2] Univ Fed Sao Carlos, BR-13565905 Sao Carlos, SP - Brazil
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES; v. 66, n. 2, p. 400-428, APR 2014.
Citações Web of Science: 9
Resumo

We give a complete classification of umbilical submanifolds of arbitrary dimension and codimension of S-n x R, extending the classification of umbilical surfaces in s(2) x R by Souam and Toubiana as well as the local description of umbilical hypersurfaces in S-n x R by Van der Veken and Vrancken. We prove that, besides small spheres in a slice, up to isometries of the ambient space they come in a two-parameter family of rotational submanifolds whose substantial codimension is either one or two and whose profile is a curve in a totally geodesic 51 x Ill or s(2) x R, respectively, the former case arising in a one-parameter family. All of them are diffeomorphic to a sphere, except for a single element that is diffeomorphic to Euclidean space. We obtain explicit parametrizations of all such submanifolds. We also study more general classes of submanifolds of S-n x R and H-n x R. In particular, we give a complete description of all submanifolds in those product spaces for which the tangent component of a unit vector field spanning the factor R is an eigenvector of all shape operators. We show that surfaces with parallel mean curvature vector in S-n x R and H-n x R having this property are rotational surfaces, and use this fact to improve some recent results by Alencar, do Carmo, and Tribuzy. We also obtain a Dajczer-type reduction of codimension theorem for submanifolds of S-n x R and H-n x R. (AU)

Processo FAPESP: 11/21362-2 - Ações de grupos, teoria de subvariedades, e análise global em geometria Riemanniana e pseudo-riemanniana
Beneficiário:Paolo Piccione
Modalidade de apoio: Auxílio à Pesquisa - Temático