Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

An active learning paradigm based on a priori data reduction and organization

Texto completo
Autor(es):
Saito, Priscila T. M. [1, 2] ; de Rezende, Pedro J. [1] ; Falcao, Alexandre X. [1] ; Suzuki, Celso T. N. [1, 3] ; Gomes, Jancarlo F. [1, 4]
Número total de Autores: 5
Afiliação do(s) autor(es):
[1] Univ Estadual Campinas, Inst Comp, Campinas, SP - Brazil
[2] Fed Technol Univ Parana, Dept Comp Engn, Curitiba, Parana - Brazil
[3] IMMUNOCAMP Res & Dev Technol, Campinas, SP - Brazil
[4] Univ Estadual Campinas, Inst Biol, Campinas, SP - Brazil
Número total de Afiliações: 4
Tipo de documento: Artigo Científico
Fonte: EXPERT SYSTEMS WITH APPLICATIONS; v. 41, n. 14, p. 6086-6097, OCT 15 2014.
Citações Web of Science: 8
Resumo

In the past few years, active learning has been reasonably successful and it has drawn a lot of attention. However, recent active learning methods have focused on strategies in which a large unlabeled dataset has to be reprocessed at each learning iteration. As the datasets grow, these strategies become inefficient or even a tremendous computational challenge. In order to address these issues, we propose an effective and efficient active learning paradigm which attains a significant reduction in the size of the learning set by applying an a priori process of identification and organization of a small relevant subset. Furthermore, the concomitant classification and selection processes enable the classification of a very small number of samples, while selecting the informative ones. Experimental results showed that the proposed paradigm allows to achieve high accuracy quickly with minimum user interaction, further improving its efficiency. (C) 2014 Elsevier Ltd. All rights reserved. (AU)

Processo FAPESP: 07/52015-0 - Métodos de aproximação para computação visual
Beneficiário:Jorge Stolfi
Modalidade de apoio: Auxílio à Pesquisa - Temático