Busca avançada
Ano de início
Entree

EMU concedido no processo 2017/15220-7: sistema de imagem VideoMeterLab

Resumo

A crescente demanda por sementes no Brasil, em especial para as culturas de importância econômica, leva à necessidade de constante aperfeiçoamento nos parâmetros para avaliação da qualidade deste insumo, com o propósito de maximização da produção e, consequentemente, da competitividade do setor agrícola no cenário econômico nacional e internacional. Sendo assim, a avaliação da qualidade de sementes por meio de técnicas de análise de imagens não destrutivas é de grande interesse, pois podem ser obtidas informações objetivas, em período de tempo relativamente curto, com menor interferência humana e com grande potencial de portabilidade. Em continuidade ao projeto temático "Análise de Imagens na Pesquisa em Tecnologia de Sementes", financiado pela FAPESP (processo nº 06/57900-0),o presente projeto tem como objetivo dar prosseguimento aos estudos sobre métodos não destrutivos para avaliação da qualidade de sementes, a partir do aperfeiçoamento de recentes técnicas de análise de imagens de raios X e de Ressonância Magnética, bem como introdução e o estabelecimento no país, das técnicas de análise de imagens multiespectrais e de fluorescência de clorofila. Espera-se com este projeto encontrar padrões de imagens ópticas por meio de técnicas modernas que permitam a caracterização de alterações nos padrões de qualidade de sementes de cenoura, tomate, pinhão-manso e amendoim, e dar continuidade aos trabalhos que o grupo de pesquisadores envolvidos vêm realizando nos últimos anos, permitindo o fortalecimento e ampliação de abordagens inovadoras, com a inclusão de novas linhas de pesquisa em proposta interinstitucional, de âmbito internacional. (AU)

Matéria(s) publicada(s) na Agência FAPESP sobre o auxílio:
Matéria(s) publicada(s) em Outras Mídias (0 total):
Mais itensMenos itens
VEICULO: TITULO (DATA)
VEICULO: TITULO (DATA)

Publicações científicas (7)
(Referências obtidas automaticamente do Web of Science e do SciELO, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores)
DA SILVA, CLISSIA BARBOZA; OLIVEIRA, NIELSEN MOREIRA; AMARAL DE CARVALHO, MARCIA EUGENIA; DE MEDEIROS, ANDRE DANTAS; NOGUEIRA, MARINA DE LIMA; DOS REIS, ANDRE RODRIGUES. Autofluorescence-spectral imaging as an innovative method for rapid, non-destructive and reliable assessing of soybean seed quality. SCIENTIFIC REPORTS, v. 11, n. 1 SEP 8 2021. Citações Web of Science: 0.
OLIVEIRA, NIELSEN MOREIRA; DE MEDEIROS, ANDRE DANTAS; NOGUEIRA, MARINA DE LIMA; ARTHUR, VALTER; MASTRANGELO, THIAGO DE ARAUJO; DA SILVA, CLISSIA BARBOZA. Hormetic effects of low-dose gamma rays in soybean seeds and seedlings: A detection technique using optical sensors. COMPUTERS AND ELECTRONICS IN AGRICULTURE, v. 187, AUG 2021. Citações Web of Science: 0.
DA SILVA, CLISSIA BARBOZA; MARTINS BIANCHINI, VITOR DE JESUS; DE MEDEIROS, ANDRE DANTAS; DUARTE DE MORAES, MARIA HELOISA; MARASSI, AGIDE GIMENEZ; TANNUS, ALBERTO. A novel approach for Jatropha curcas seed health analysis based on multispectral and resonance imaging techniques. INDUSTRIAL CROPS AND PRODUCTS, v. 161, MAR 2021. Citações Web of Science: 0.
MARTINS BIANCHINI, VITOR DE JESUS; MASCARIN, GABRIEL MOURA; APARECIDA SANTOS SILVA, LUCIA CRISTINA; ARTHUR, VALTER; CARSTENSEN, JENS MICHAEL; BOELT, BIRTE; DA SILVA, CLISSIA BARBOZA. Multispectral and X-ray images for characterization of Jatropha curcas L. seed quality. PLANT METHODS, v. 17, n. 1 JAN 26 2021. Citações Web of Science: 2.
GALLETTI, PATRICIA A.; CARVALHO, MARCIA E. A.; HIRAI, WELINTON Y.; BRANCAGLIONI, VIVIAN A.; ARTHUR, VALTER; BARBOZA DA SILVA, CLISSIA. Integrating Optical Imaging Tools for Rapid and Non-invasive Characterization of Seed Quality: Tomato (Solanum lycopersicum L.) and Carrot (Daucus carota L.) as Study Cases. FRONTIERS IN PLANT SCIENCE, v. 11, DEC 21 2020. Citações Web of Science: 1.
FRANCA-SILVA, FABIANO; QUEIROZ REGO, CARLOS HENRIQUE; GUILHIEN GOMES-JUNIOR, FRANCISCO; DUARTE DE MORAES, MARIA HELOISA; DE MEDEIROS, ANDRE DANTAS; DA SILVA, CLISSIA BARBOZA. Detection ofDrechslera avenae(Eidam) Sharif [Helminthosporium avenae(Eidam)] in Black Oat Seeds (Avena strigosaSchreb) Using Multispectral Imaging. SENSORS, v. 20, n. 12 JUN 2020. Citações Web of Science: 7.
MASTRANGELO, THIAGO; DA SILVA, FABIANO FRANCA; MASCARIN, GABRIEL MOURA; DA SILVA, CLISSIA BARBOZA. Multispectral imaging for quality control of laboratory-reared Anastrepha fraterculus (Diptera: Tephritidae) pupae. Journal of Applied Entomology, NOV 2019. Citações Web of Science: 0.

Por favor, reporte erros na lista de publicações científicas escrevendo para: cdi@fapesp.br.