| Processo: | 16/07183-1 |
| Modalidade de apoio: | Bolsas no Exterior - Estágio de Pesquisa - Pós-Doutorado |
| Data de Início da vigência: | 01 de agosto de 2016 |
| Data de Término da vigência: | 30 de novembro de 2016 |
| Área de conhecimento: | Ciências Exatas e da Terra - Probabilidade e Estatística - Probabilidade |
| Pesquisador responsável: | Luiz Renato Gonçalves Fontes |
| Beneficiário: | Manuel Alejandro González Navarrete |
| Supervisor: | Errico Presutti |
| Instituição Sede: | Instituto de Matemática e Estatística (IME). Universidade de São Paulo (USP). São Paulo , SP, Brasil |
| Instituição Anfitriã: | Gran Sasso Science Institute (GSSI), Itália |
| Vinculado à bolsa: | 15/02801-6 - Modelos de Ising com campo externo periódico: diagrama de fase e evolução estocástica, BP.PD |
| Assunto(s): | Mecânica estatística Processos estocásticos Modelo de Ising Grandes desvios Cadeias de Markov |
| Palavra(s)-Chave do Pesquisador: | cadeias de Markov | campo externo não uniforme | grandes desvios | metaestabilidade | modelo de Ising | Mecânica estatística - Processos estocásticos |
Resumo Neste projeto propomos o estudo de comportamentos metaestáveis para modelos de Ising ferromagnéticos com um campo externo periódico. Em particular, vamos considerar campos externos formando um tabuleiro de xadrez, em que, alternadamente, em cada casa atribuímos o valor $h_1$ ou $-h_2$, onde $h_1,h_2 > 0$.Este trabalho da continuidade ao projeto de pesquisa do candidato (processo 2015/02801-6). Resultados anteriores e recentes estão relacionados com o diagrama de fases para baixas temperaturas, para tal modelo de Ising. A transição de fase provada em González-Navarrete et al. (2016), sugere que este modelo é um exemplo simples, porém interessante a ser considerado na compreensão inicial de problemas de metaestabilidade. Particularmente, propomos a análise de uma dinâmica a tempo discreto Metropolis, próximo da linha de coexistência $0 < h_1, h_2 < h_c$, esperando obter comportamentos metaestáveis. Mais especificamente, a transição deverá ser conduzida pela formação de um núcleo crítico cujo tamanho diverge na medida que nos aproximamos da linha de coexistência. Este fato está diretamente ligado à transição de fase previamente demonstrada. (AU) | |
| Matéria(s) publicada(s) na Agência FAPESP sobre a bolsa: | |
| Mais itensMenos itens | |
| TITULO | |
| Matéria(s) publicada(s) em Outras Mídias ( ): | |
| Mais itensMenos itens | |
| VEICULO: TITULO (DATA) | |
| VEICULO: TITULO (DATA) | |