Homologia singular - interpretacao topologica para a homologia de um grupo g.
Processo: | 18/01107-7 |
Modalidade de apoio: | Bolsas no Brasil - Iniciação Científica |
Data de Início da vigência: | 01 de abril de 2018 |
Data de Término da vigência: | 31 de março de 2020 |
Área de conhecimento: | Ciências Exatas e da Terra - Matemática - Geometria e Topologia |
Pesquisador responsável: | Alice Kimie Miwa Libardi |
Beneficiário: | Pedro Henrique Muller Bortolucci |
Instituição Sede: | Instituto de Geociências e Ciências Exatas (IGCE). Universidade Estadual Paulista (UNESP). Campus de Rio Claro. Rio Claro , SP, Brasil |
Assunto(s): | Topologia algébrica Dualidade de Poincare Homologia singular Cohomologia singular Grupo fundamental |
Palavra(s)-Chave do Pesquisador: | Cohomologia Singular | Dualidade de Poincaré | Grupo fundamental | homologia singular | Orientação de Variedades | Topologia Algébrica |
Resumo Esse projeto tem por objetivo a introdução de conceitos e técnicas de Topologia Algébrica que são fundamentais para o aluno que pretende fazer uma pós-graduação nessa área. Serão abordados os seguintes tópicos: grupo fundamental, homologia singular e faremos alguns cálculos, usando-se em alguns casos a sequência de Mayer-Vietoris. A parte final do projeto, um pouco mais avançado, abordará Orientação de Variedades, Teoria de Cohomologia Singular, Produtos e Dualidade de Poincaré. (AU) | |
Matéria(s) publicada(s) na Agência FAPESP sobre a bolsa: | |
Mais itensMenos itens | |
TITULO | |
Matéria(s) publicada(s) em Outras Mídias ( ): | |
Mais itensMenos itens | |
VEICULO: TITULO (DATA) | |
VEICULO: TITULO (DATA) | |