Busca avançada
Ano de início
Entree


Bifurcações genéricas de sistemas dinâmicos suaves por partes com simetrias

Texto completo
Autor(es):
Felipe Emanoel Chaves
Número total de Autores: 1
Tipo de documento: Tese de Doutorado
Imprenta: Campinas, SP.
Instituição: Universidade Estadual de Campinas (UNICAMP). Instituto de Matemática, Estatística e Computação Científica
Data de defesa:
Membros da banca:
Marco Antonio Teixeira; Ricardo Miranda Martins; Claudio Aguinaldo Buzzi; Luiz Fernando de Osório Mello; Regilene Delazari dos Santos Oliveira
Orientador: Marco Antonio Teixeira
Resumo

Neste trabalho discutiremos alguns aspectos qualitativos e geométricos de sistemas dinâmicos não-suaves com simetria. O nosso objetivo é desenvolver um método sistemático para o estudo de bifurcações locais (e globais) em duas classes de sistemas dinâmicos não-suaves com simetria, denominadas sistemas de Filippov reversíveis e sistemas de Filippov equivariantes. O conceito de reversibilidade e equivariância está ligado a uma dada involução. Para uma extensa classe de campos de Filippov planares reversíveis e campos de Filippov planares equivariantes, onde localmente o conjunto dos pontos fixos da involução é igual à variedade de descontinuidade do campo de Filippov, apresentamos todos os tipos topológicos e formas normais das singularidades de codimensão 0 e 1, bem como todos os seus respectivos diagramas de bifurcação. Além disso, apresentamos todos os tipos topológicos e formas normais das singularidades de codimensão 2 para os campos de Filippov planares reversíveis, esboçando alguns de seus diagramas de bifurcação. Também discutimos, neste caso, a relação existente entre os campos de Filippov reversíveis e os campos suaves reversíveis. Por fim, propomos uma classificação das singularidades de codimensão 2 dos campos de Filippov equivariantes e apresentamos uma pré classificação das singularidades de codimensão 0 e 1 dos campos de Filippov reversíveis ou equivariantes, para o caso onde a dimensão do conjunto dos pontos fixos da involução em questão é igual zero, exibindo algumas propostas para trabalhos futuros (AU)

Processo FAPESP: 09/08946-5 - Simetrias e Sistemas Descontínuos
Beneficiário:Felipe Emanoel Chaves
Modalidade de apoio: Bolsas no Brasil - Doutorado