Busca avançada
Ano de início
Entree


Orbibundles, variedades hiperbólicas complexas e geometria sobre álgebras

Texto completo
Autor(es):
Hugo Cattarucci Botos
Número total de Autores: 1
Tipo de documento: Tese de Doutorado
Imprenta: São Carlos.
Instituição: Universidade de São Paulo (USP). Instituto de Ciências Matemáticas e de Computação (ICMC/SB)
Data de defesa:
Membros da banca:
Carlos Henrique Grossi Ferreira; Mikhail Viktorovich Belolipetskiy; Igor Mencattini; Ricardo Augusto Emmanuel Mendes
Orientador: Carlos Henrique Grossi Ferreira
Resumo

Esta tese consiste dos trabalhos originais Hugo C. Botós, Orbifolds and orbibundles in complex hyperbolic geometry, arXiv:2011.09372; Hugo C. Botós, Carlos H. Grossi. Quotients of the holomorphic 2-ball and the turnover, arXiv:2109.08753; Hugo C. Botós, Geometry over algebras, arXiv:2203.05101 bem como de uma análise dos principais resultados de cada um deles. O primeiro estabelece ferramentas básicas sobre orbifolds e orbibundles do ponto de vista da difeologia. O foco é desenvolver ferramentas a serem aplicadas à construção de variedades hiperbólicas complexas. No segundo trabalho, vários novos exemplos de fibrados de disco (sobre superfícies fechadas) com estruturas hiperbólicas complexas são construídos. Esses fibrados originam-se de orbibundles de discos sobre esferas com três pontos cônicos e, como tais, admitem estrutura hiperbólica complexa não-rígida (deformável). Todos os exemplos obtidos suportam a conjectura de Gromov-Lawson-Thurston. O último estabelece a teoria de geometrias clássicas para álgebras além dos números reais, complexos e quaternions. Utilizamos tais geometrias para descrever os espaços de geodésicas orientadas do plano hiperbólico, do plano Euclidiano e da 2-esfera redonda. Finalmente, apresentamos uma transição geométrica natural entre tais espaços e construímos um modelo projetivo para a geometria do bidisco hiperbólico (o produto Riemanniano de dois planos hiperbólicos). (AU)

Processo FAPESP: 18/10522-8 - Variedades uniformizadas pela 2-bola holomorfa
Beneficiário:Hugo Cattarucci Botós
Modalidade de apoio: Bolsas no Brasil - Doutorado