Busca avançada
Ano de início
Entree


Representações de álgebras de Lie de campos vetoriais em variedades e supervariedades algébricas

Texto completo
Autor(es):
Henrique de Oliveira Rocha
Número total de Autores: 1
Tipo de documento: Tese de Doutorado
Imprenta: São Paulo.
Instituição: Universidade de São Paulo (USP). Instituto de Matemática e Estatística (IME/SBI)
Data de defesa:
Membros da banca:
Yuly Billig; Colin Ingalls; Adriano Adrega de Moura; Lucia Satie Ikemoto Murakami; João Fernando Schwarz
Orientador: Vyacheslav Futorny; Yuly Billig
Resumo

Esta tese é dedicada a um estudo sobre a estrutura e a teoria de representação de algumas álgebras de Lie e superálgebras de Lie de dimensão infinita. A primeira família estudada é a álgebra de Lie de campos vetoriais em uma variedade algébrica afim suave. Após uma exposição sobre a estrutura dessas álgebras de Lie, consideramos representações que admitem uma ação compatível do anel de coordenadas da variedade algébrica e são geradas finitamente como módulos sobre essa álgebra comutativa. Provamos que essas representações podem ser associadas a um feixe coerente que admite uma ação compatível do feixe tangente. Também provamos que a ação do feixe tangente é dada por um operador diferencial. A segunda família considerada é a versão em supergeometria da anterior. Após uma investigação sobre a suavidade de supervariedades algébricas, provamos que as seções globais do feixe tangente de uma supervariedade afim integral suave é uma superálgebra de Lie simples. Em seguida, consideramos as representações dessa superálgebra de Lie que admitem uma ação compatível das seções globais do feixe estrutural da supervariedade afim. De forma análoga ao caso não-super, mostramos que o feixe de módulos associado admite uma ação compatível do feixe tangente quando é coerente. Além disso, mostramos que essa ação é definida por um operador diferencial. Por fim, estudamos módulos de peso com multiplicidades finitas sobre a superálgebra de aplicações associada a uma superálgebra de Lie básica. Provamos que essas representações são cuspidais ou parabólicas induzidas de um módulo cuspidal limitado sobre uma subálgebra da superálgebra de aplicações. Mostramos também que módulos cuspidal limitados são módulos de avaliação. (AU)

Processo FAPESP: 20/13811-0 - Representações de Álgebras de Lie de campos vetoriais em variedades algébricas
Beneficiário:Henrique de Oliveira Rocha
Modalidade de apoio: Bolsas no Brasil - Doutorado