Busca avançada
Ano de início
Entree


Métodos para problemas mal-postos discretos de grande porte

Texto completo
Autor(es):
Leonardo Silveira Borges
Número total de Autores: 1
Tipo de documento: Tese de Doutorado
Imprenta: Campinas, SP.
Instituição: Universidade Estadual de Campinas (UNICAMP). Instituto de Matemática, Estatística e Computação Científica
Data de defesa:
Membros da banca:
Maria Cristina de Castro Cunha; Fermin Sinforiano Viloche Bazan; Fabio Antonio Dorini; Luiz Mariano Paes de Carvalho Filho; Márcia Aparecida Gomes Ruggiero; Eduardo Cardoso de Abreu
Orientador: Maria Cristina de Castro Cunha; Fermin Sinforiano Viloche Bazan
Resumo

A resolução estável de problemas mal-postos discretos requer o uso de métodos de regularização. Dentre vários métodos de regularização existentes na literatura, um dos mais utilizados é o método de regularização de Tikhonovçuja eficiência depende da escolha do parâmetro de regularização. Existem vários métodos para selecionar um parâmetro apropriado tais como o princípio da discrepância de Morozov e métodos heurísticos como o critério da curva-L de Hansen, a Validação Cruzada Generalizada de Golub, Heath e Wahba e o método de ponto fixo de Bazán. Problemas mal-postos discretos de grande porte podem ser resolvidos por métodos iterativos como CGLS e LSQR desde que as iterações sejam interrompidas antes que a influência do ruído deteriore a qualidade das iteradas. Esta é uma tarefa difícil que ainda não foi abordada satisfatoriamente na literatura. Em uma tentativa de atenuar a dificuldade na escolha da iteração de parada, tais métodos podem ser combinados com o método de regularização de Tikhonov gerando os métodos híbridos como GKB-FP e W-GCV (ambos usam a matriz identidade como matriz de regularização). As contribuições desta tese incluem primeiramente novas informações referentes ao algoritmo GKB-FP e como este pode ser eficientemente implementado para o método de regularização de Tikhonov com a matriz de regularização sendo diferente da matriz identidade. Como segunda contribuição tem-se o desenvolvimento de um critério de parada automático para métodos iterativos para problemas "de grande porte", incluindo meios para incorporar informações a priori da solução (como regularidade, por exemplo) no processo iterativo. O método de regularização de Tikhonov usualmente está confinado apenas a um único parâmetro. Entretanto, alguns problemas apresentam soluções com distintas características que devem ser incorporadas na solução regularizada. Isso conduz ao método de regularização de Tikhonov com múltiplos parâmetros. A terceira contribuição desta tese é o desenvolvimento de um método baseado em iterações de ponto fixo para a seleção destes parâmetros e um algoritmo do tipo GKB-FP para problemas de grande porte. Por fim, os resultados teóricos obtidos nesta pesquisa são avaliados na construção de soluções numéricas para diversos problemas como restauração e super-resolução de imagens, problemas de espalhamento e outros obtidos de equações integrais de Fredholm (AU)

Processo FAPESP: 09/52193-1 - Desenvolvimento de metodos para problemas inversos de grande porte.
Beneficiário:Leonardo Silveira Borges
Modalidade de apoio: Bolsas no Brasil - Doutorado