Texto completo
| |
| Autor(es): |
Lucas de Oliveira
Número total de Autores: 1
|
| Tipo de documento: | Dissertação de Mestrado |
| Imprenta: | Campinas, SP. |
| Instituição: | Universidade Estadual de Campinas (UNICAMP). Instituto de Computação |
| Data de defesa: | 2012-05-23 |
| Membros da banca: |
Cid Carvalho de Souza;
Carlos Eduardo Ferreira;
Pedro Jussieu de Rezende
|
| Orientador: | Cid Carvalho de Souza |
| Resumo | |
Esta dissertação tem como foco a investigação experimental de algoritmos exatos, aproximativos e heurísticos aplicados na resolução do chamado problema do corredor de comprimento mínimo (PCCM). No PCCM recebemos um polígono retilinear P e um conjunto de polígonos retilineares menores formando uma subdivisão S planar conexa de P. Uma solução para este problema, também chamada de corredor, é formada por um conjunto conexo de arestas de S, e tal que cada face interna em S possui pelo menos um ponto em sua borda que pertence a alguma aresta deste conjunto. O objetivo então é encontrar um corredor tal que a soma total dos comprimentos das arestas seja a menor possível. Trata-se de um problema NP-difícil com aplicações em áreas diversas, tais como telecomunicações, engenharia civil e projeto de circuitos VLSI. O PCCM pode ser reduzido polinomialmente a um problema em grafos denominado problema da árvore de Steiner com grupos (PASG). Considerando esta transformação, estudamos e implementamos dois métodos aproximativos, um método exato de branch-and-cut, e um método heurístico baseado na metaheurística GRASP combinada com um evolutionary path relinking (GRASP+EPR). Além disso, propomos três heurísticas de busca local que visam melhorar a qualidade de soluções do PASG. Instâncias do PCCM foram geradas aleatoriamente, nas quais aplicamos os métodos implementados. Analisamos os resultados, e apresentamos as situações onde é interessante utilizar cada método. Verificamos que o método branch-and-cut foi capaz de encontrar soluções ótimas para instâncias que julgamos ser de grande porte em tempos computacionalmente aceitáveis. O melhor algoritmo aproximativo obteve corredores que na média têm comprimento 17% maior que o comprimento ótimo. Se combinarmos este algoritmo com as heurísticas de melhoria propostas este percentual cai para a média de 3,5%. Finalmente, o GRASP+EPR consome mais tempo que este algoritmo aproximativo, entretanto, o comprimento dos corredores obtidos por ele é em média 0,9% maior que o comprimento ótimo (AU) | |
| Processo FAPESP: | 10/06720-7 - O problema do corredor de peso mínimo: algoritmos exatos e heurísticas |
| Beneficiário: | Lucas de Oliveira |
| Modalidade de apoio: | Bolsas no Brasil - Mestrado |