Busca avançada
Ano de início
Entree

Generalizações de grafos threshold

Processo: 17/14616-4
Modalidade de apoio:Bolsas no Exterior - Estágio de Pesquisa - Doutorado
Data de Início da vigência: 01 de novembro de 2017
Data de Término da vigência: 31 de outubro de 2018
Área de conhecimento:Ciências Exatas e da Terra - Matemática
Pesquisador responsável:Marcelo Firer
Beneficiário:Roberto Assis Machado
Supervisor: Olgica Milenkovic
Instituição Sede: Instituto de Matemática, Estatística e Computação Científica (IMECC). Universidade Estadual de Campinas (UNICAMP). Campinas , SP, Brasil
Instituição Anfitriã: University of Illinois at Urbana-Champaign, Estados Unidos  
Vinculado à bolsa:15/11286-8 - Métricas que respeitam suporte e decodificação de máxima proximidade, BP.DR
Assunto(s):Matemática discreta   Teoria dos grafos   Mídias sociais
Palavra(s)-Chave do Pesquisador:doubly threshold graphs | Matemática Discreta

Resumo

As redes desempenham um papel importante em vários fenômenos: naturais, sociais e econômicos. Recentemente, tem-se utilizado métodos derivados da teoria de grafos para extrair informações das redes e, então, prever o comportamento do sistema. No caso das redes sociais, o sistema é modelado por grafos "threshold". Ravanmehr e outros, proporam uma generalização para tal família de grafos (doubly threshold (DT) graphs), que carregam mais informações de cada indivíduo da rede. Embora essa família seja maior, ela ainda não representa todos os grafos que podem representar os diferentes fenômenos das redes sociais. Neste sentido, propomos duas generalizações do conceito de grafos "threshold" e estudá-las comparando com outras estruturas. (AU)

Matéria(s) publicada(s) na Agência FAPESP sobre a bolsa:
Mais itensMenos itens
Matéria(s) publicada(s) em Outras Mídias ( ):
Mais itensMenos itens
VEICULO: TITULO (DATA)
VEICULO: TITULO (DATA)

Publicações científicas
(Referências obtidas automaticamente do Web of Science e do SciELO, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores)
PINHEIRO, JERRY ANDERSON; MACHADO, ROBERTO ASSIS; FIRER, MARCELO. Combinatorial metrics: MacWilliams-type identities, isometries and extension property. DESIGNS CODES AND CRYPTOGRAPHY, v. 87, n. 2-3, p. 14-pg., . (17/14616-4, 17/10018-5, 13/25977-7)
PINHEIRO, JERRY ANDERSON; MACHADO, ROBERTO ASSIS; FIRER, MARCELO. Combinatorial metrics: MacWilliams-type identities, isometries and extension property. DESIGNS CODES AND CRYPTOGRAPHY, v. 87, n. 2-3, SI, p. 327-340, . (13/25977-7, 17/14616-4, 17/10018-5)