Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Defining Multivariate Normative Rules for Healthy Aging using Neuroimaging and Machine Learning: An Application to Alzheimer's Disease

Texto completo
Autor(es):
de Oliveira, Ailton Andrade [1] ; Carthery-Goulart, Maria Teresa [1] ; de Magalhaes Oliveira Junior, Pedro Paulo [2] ; Carrettiero, Daniel Carneiro [3] ; Sato, Joao Ricardo [1, 2] ; Initi, Alzheimer's Dis Neuroimaging
Número total de Autores: 6
Afiliação do(s) autor(es):
[1] Univ Fed ABC, Ctr Math Computat & Cognit, BR-09210580 Santo Andre, SP - Brazil
[2] Univ Sao Paulo, Fac Med, Dept Radiol, NIF LIM44, Sao Paulo - Brazil
[3] Univ Fed ABC, Ctr Nat & Human Sci, BR-09210580 Santo Andre, SP - Brazil
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: JOURNAL OF ALZHEIMER'S DISEASE; v. 43, n. 1, p. 201-212, 2015.
Citações Web of Science: 7
Resumo

Background: Neuroimaging techniques combined with computational neuroanatomy have been playing a role in the investigation of healthy aging and Alzheimer's disease (AD). The definition of normative rules for brain features is a crucial step to establish typical and atypical aging trajectories. Objective: To introduce an unsupervised pattern recognition method; to define multivariate normative rules of neuroanatomical measures; and to propose a brain abnormality index. Methods: This study was based on a machine learning approach (one class classification or novelty detection) to neuroanatomical measures (brain regions, volume, and cortical thickness) extracted from the Alzheimer's Disease Neuroimaging Initiative (ADNI)'s database. We applied nu-One-Class Support Vector Machine (nu-OC-SVM) trained with data from healthy subjects to build an abnormality index, which was compared with subjects diagnosed with mild cognitive impairment and AD. Results: The method was able to classify AD subjects as outliers with an accuracy of 84.3% at a false alarm rate of 32.5%. The proposed brain abnormality index was found to be significantly associated with group diagnosis, clinical data, biomarkers, and future conversion to AD. Conclusion: These results suggest that one-class classification may be a promising approach to help in the detection of disease conditions. Our findings support a framework considering the continuum of brain abnormalities from healthy aging to AD, which is correlated with cognitive impairment and biomarkers measurements. (AU)

Processo FAPESP: 13/00506-1 - Séries temporais, ondaletas e análise de dados funcionais
Beneficiário:Pedro Alberto Morettin
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 13/10498-6 - Aprendizado de máquina em neuroimagem: desenvolvimento de métodos e aplicações clínicas em transtornos psiquiátricos
Beneficiário:João Ricardo Sato
Modalidade de apoio: Auxílio à Pesquisa - Regular