| Texto completo | |
| Autor(es): |
Faustino, N.
[1]
Número total de Autores: 1
|
| Afiliação do(s) autor(es): | [1] IMECC Unicamp, Dept Matemat Aplicada, BR-13083859 Campinas, SP - Brazil
Número total de Afiliações: 1
|
| Tipo de documento: | Artigo Científico |
| Fonte: | Applied Mathematics and Computation; v. 247, p. 607-622, NOV 15 2014. |
| Citações Web of Science: | 5 |
| Resumo | |
With the aim of derive a quasi-monomiality formulation in the context of discrete hypercomplex variables, one will amalgamate through a Clifford-algebraic structure of signature (0,n) the umbral calculus framework with Lie-algebraic symmetries. The exponential generating function (EGF) carrying the continuum Dirac operator D = Sigma(n)(j-1) e(j)partial derivative(xj) together with the Lie-algebraic representation of raising and lowering operators acting on the lattice hZ(n) is used to derive the corresponding hypercomplex polynomials of discrete variable as Appell sets with membership on the space Clifford-vector-valued polynomials. Some particular examples concerning this construction such as the hypercomplex versions of falling factorials and the Poisson-Charlier polynomials are introduced. Certain applications from the view of interpolation theory and integral transforms are also discussed. (C) 2014 Elsevier Inc. All rights reserved. (AU) | |
| Processo FAPESP: | 13/07590-8 - Aplicações de Cálculo de Clifford Discreto em Teorias de Campos Quânticos. |
| Beneficiário: | Nelson José Rodrigues Faustino |
| Modalidade de apoio: | Bolsas no Brasil - Pós-Doutorado |