Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Change of the congruence canonical form of 2-by-2 and 3-by-3 matrices under perturbations and bundles of matrices under congruence

Texto completo
Autor(es):
Dmytryshyn, Andrii [1, 2] ; Futorny, Vyacheslav [3] ; Kagstrom, Bo [1, 2] ; Klimenko, Lena [4] ; Sergeichuk, Vladimir V. [5]
Número total de Autores: 5
Afiliação do(s) autor(es):
[1] Umea Univ, Dept Comp Sci, S-90187 Umea - Sweden
[2] Umea Univ, HPC2N, S-90187 Umea - Sweden
[3] Univ Sao Paulo, Dept Math, BR-05508 Sao Paulo - Brazil
[4] Natl Tech Univ Ukraine, Kyiv Polytech Inst, Kiev - Ukraine
[5] Ukrainian Acad Sci, Inst Math, Kiev - Ukraine
Número total de Afiliações: 5
Tipo de documento: Artigo Científico
Fonte: Linear Algebra and its Applications; v. 469, p. 305-334, MAR 15 2015.
Citações Web of Science: 5
Resumo

We construct the Hasse diagrams G(2) and G(3) for the closure ordering on the sets of congruence classes of 2 x 2 and 3 x 3 complex matrices. In other words, we construct two directed graphs whose vertices are 2 x 2 or, respectively, 3 x 3 canonical matrices under congruence, and there is a directed path from A to B if and only if A can be transformed by an arbitrarily small perturbation to a matrix that is congruent to B. A bundle of matrices under congruence is defined as a set of square matrices A for which the pencils A)AT belong to the same bundle under strict equivalence. In support of this definition, we show that all matrices in a congruence bundle of 2 x 2 or 3 x 3 matrices have the same properties with respect to perturbations. We construct the Hasse diagrams G(2)(B) and G(3)(B) for the closure ordering on the sets of congruence bundles of 2 x 2 and, respectively, 3 x 3 matrices. We find the isometry groups of 2 x 2 and 3 x 3 congruence canonical matrices. (C) 2014 Elsevier Inc. All rights reserved. (AU)

Processo FAPESP: 10/50347-9 - Álgebras, representações e aplicações
Beneficiário:Ivan Chestakov
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 12/18139-2 - Métodos de teoria de representações em álgebra linear
Beneficiário:Vyacheslav Futorny
Modalidade de apoio: Auxílio à Pesquisa - Pesquisador Visitante - Internacional