ON MINIMAL LAGRANGIAN SURFACES IN THE PRODUCT OF R... - BV FAPESP
Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

ON MINIMAL LAGRANGIAN SURFACES IN THE PRODUCT OF RIEMANNIAN TWO MANIFOLDS

Texto completo
Autor(es):
Georgiou, Nikos [1]
Número total de Autores: 1
Afiliação do(s) autor(es):
[1] Univ Fed Amazonas, Inst Ciencias Exatas, Manaus, Amazonas - Brazil
Número total de Afiliações: 1
Tipo de documento: Artigo Científico
Fonte: TOHOKU MATHEMATICAL JOURNAL; v. 67, n. 1, p. 137-152, MAR 2015.
Citações Web of Science: 0
Resumo

Let (Sigma(1), g(1)) and (Sigma(2), g(2)) be connected, complete and orientable 2-dimensional Riemannian manifolds. Consider the two canonical Kahler structures (G(epsilon), J, Omega(epsilon)) on the product 4-manifold Sigma(1) x Sigma(2) given by G(epsilon) = g(1) circle plus g(2), epsilon = +/- 1 and J is the canonical product complex structure. Thus for epsilon = 1 the Kahler metric G(+) is Riemannian while for epsilon = -1, G(-) is of neutral signature. We show that the metric G(epsilon) is locally conformally flat if and only if the Gauss curvatures kappa(g(1)) and kappa(g(2)) are both constants satisfying kappa(g(1)) = -epsilon kappa(g(2)). We also give conditions on the Gauss curvatures for which every G(epsilon)-minimal Lagrangian surface is the product gamma(1) x gamma(2) subset of Sigma(1) x Sigma(2), where gamma(1) and gamma(2) are geodesics of (Sigma(1), g(1)) and (Sigma(2), g(2)), respectively. Finally, we explore the Hamiltonian stability of projected rank one Hamiltonian G(epsilon)-minimal surfaces. (AU)

Processo FAPESP: 10/08669-9 - Congruências normais e subvariedades lagrangeanas nos espaços de geodésicas
Beneficiário:Nikos Georgiou
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado