| Texto completo | |
| Autor(es): |
Número total de Autores: 3
|
| Afiliação do(s) autor(es): | [1] Univ Sao Paulo, Inst Math & Stat, Dept Comp Sci, Sao Paulo, SP - Brazil
[2] Univ Fed Sao Paulo, Inst Sci & Technol, Sao Jose Dos Campos, SP - Brazil
[3] Univ Estadual Campinas, Inst Math Stat & Sci Comp, Dept Appl Math, Campinas, SP - Brazil
Número total de Afiliações: 3
|
| Tipo de documento: | Artigo Científico |
| Fonte: | Journal of Computational and Applied Mathematics; v. 282, p. 1-16, JUL 2015. |
| Citações Web of Science: | 4 |
| Resumo | |
Inexact Restoration methods have been proved to be effective to solve constrained optimization problems in which some structure of the feasible set induces a natural way of recovering feasibility from arbitrary infeasible points. Sometimes natural ways of dealing with minimization over tangent approximations of the feasible set are also employed. A recent paper {[}Banihashemi and Kaya (2013)] suggests that the Inexact Restoration approach can be competitive with well-established nonlinear programming solvers when applied to certain control problems without any problem-oriented procedure for restoring feasibility. This result motivated us to revisit the idea of designing general-purpose Inexact Restoration methods, especially for large-scale problems. In this paper we introduce affordable algorithms of Inexact Restoration type for solving arbitrary nonlinear programming problems and we perform the first experiments that aim to assess their reliability. Initially, we define a purely local Inexact Restoration algorithm with quadratic convergence. Then, we modify the local algorithm in order to increase the chances of success of both the restoration and the optimization phase. This hybrid algorithm is intermediate between the local algorithm and a globally convergent one for which, under suitable assumptions, convergence to KKT points can be proved. (C) 2015 Elsevier B.V. All rights reserved. (AU) | |
| Processo FAPESP: | 13/07375-0 - CeMEAI - Centro de Ciências Matemáticas Aplicadas à Indústria |
| Beneficiário: | Francisco Louzada Neto |
| Modalidade de apoio: | Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs |
| Processo FAPESP: | 10/10133-0 - Problemas de corte, empacotamento, dimensionamento de lotes e programação da produção, e suas integrações em contextos industriais e logísticos |
| Beneficiário: | Reinaldo Morabito Neto |
| Modalidade de apoio: | Auxílio à Pesquisa - Temático |
| Processo FAPESP: | 13/03447-6 - Estruturas combinatórias, otimização e algoritmos em Teoria da Computação |
| Beneficiário: | Carlos Eduardo Ferreira |
| Modalidade de apoio: | Auxílio à Pesquisa - Temático |
| Processo FAPESP: | 13/05475-7 - Métodos computacionais de otimização |
| Beneficiário: | Sandra Augusta Santos |
| Modalidade de apoio: | Auxílio à Pesquisa - Temático |