A conjectura FPm para grupos metabelianos em dimensões pequenas
Álgebras e superálgebras primas alternativos e de tipo (-1,1): subálgebras, ideais...
Álgebras de Lie e de Jordan, suas representações e generalizações
Texto completo | |
Autor(es): |
Kuz'min, Alexey
[1]
Número total de Autores: 1
|
Afiliação do(s) autor(es): | [1] Inst Math & Stat, BR-05508090 Sao Paulo - Brazil
Número total de Afiliações: 1
|
Tipo de documento: | Artigo Científico |
Fonte: | COMMUNICATIONS IN ALGEBRA; v. 43, n. 8, p. 3169-3189, 2015. |
Citações Web of Science: | 1 |
Resumo | |
Since 1976, it is known from the paper by V. P. Belkin that the variety RA(2) of right alternative metabelian (solvable of index 2) algebras over an arbitrary field is not Spechtian (contains nonfinitely based subvarieties). In 2005, S. V. Pchelintsev proved that the variety generated by the Grassmann RA(2)-algebra of finite rank r over a field F, for char(F) not equal 2, is Spechtian iff r = 1. We construct a nonfinitely based variety R generated by the Grassmann V-algebra of rank 2 of certain finitely based subvariety V subset of RA(2) over a field F, for char(F) = 2, 3, such that R can also be generated by the Grassmann envelope of a five-dimensional superalgebra with one-dimensional even part. (AU) | |
Processo FAPESP: | 10/51880-2 - On finite basis property for varieties of nearly associative algebras. |
Beneficiário: | Alexey Kuzmin |
Modalidade de apoio: | Bolsas no Brasil - Pós-Doutorado |