Equações diferenciais com derivadas fracionárias e suas aplicações
Método assintótico fraco para leis de conservação escalares com fluxo não local: a...
Modelagem matemática e métodos computacionais para sistemas de águas rasas de duas...
Texto completo | |
Autor(es): |
Colombeau, M.
[1]
Número total de Autores: 1
|
Afiliação do(s) autor(es): | [1] Univ Sao Paulo, Inst Matemat & Estatist, Sao Paulo - Brazil
Número total de Afiliações: 1
|
Tipo de documento: | Artigo Científico |
Fonte: | Journal of Mathematical Physics; v. 56, n. 6 JUN 2015. |
Citações Web of Science: | 5 |
Resumo | |
We construct a family of classical continuous functions S(x, y, z, t, epsilon) which tend to satisfy asymptotically the system of selfgravitating pressureless fluids when epsilon -> 0. This produces a weak asymptotic method in the sense of Danilov, Omel'yanov, and Shelkovich. The construction is based on a family of two ordinary differential equations (ODEs) (one for the continuity equation and one for the Euler equation) in classical Banach spaces of continuous functions. This construction applies to 3-D selfgravitating pressureless fluids even in presence of point and string concentrations of matter. The method is constructive which permits to check numerically from standard methods for ODEs that these functions tend to the known or admitted solutions when the latter exist. As a direct application, we present a simulation of formation and evolution of a planetary system from a rotating disk of dust: a theorem in this paper asserts that the observed results are a depiction of functions that satisfy the system with arbitrary precision. (C) 2015 AIP Publishing LLC. (AU) | |
Processo FAPESP: | 12/15780-9 - Funções Generalizadas e Soluções Irregulares de Equações Lineares e Não-Lineares e Aplicações |
Beneficiário: | Mathilde Francoise Charlotte Colombeau-Fonteyne |
Modalidade de apoio: | Bolsas no Brasil - Pós-Doutorado |