Texto completo | |
Autor(es): |
Goncalves, Jairo Z.
Número total de Autores: 1
|
Tipo de documento: | Artigo Científico |
Fonte: | Journal of Group Theory; v. 18, n. 5, p. 829-843, SEP 2015. |
Citações Web of Science: | 2 |
Resumo | |
Let D be a division ring with center k and multiplicative group D-dagger, and let N be a normal subgroup of D-dagger. Assuming that N contains a subgroup G which is nonabelian torsion-free polycyclic-by-finite (not abelian-by-finite), we construct a free noncyclic subgroup of N in terms of elements of G. We also show that if char k not equal 2, D is generated over k by the torsion-free polycyclic-by finite group G (not abelian-by-finite), and if it is possible to extend the involution x({*}) = x(-1) of G to a k involution of D, then D Z contains a free symmetric pair. (AU) | |
Processo FAPESP: | 09/52665-0 - Grupos, anéis e álgebras: interações e aplicações |
Beneficiário: | Francisco Cesar Polcino Milies |
Modalidade de apoio: | Auxílio à Pesquisa - Temático |