Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Robust PLS models for soluble solids content and firmness determination in low chilling peach using near-infrared spectroscopy (NIR)

Texto completo
Autor(es):
Martins Nascimento, Paloma Andrade [1] ; de Carvalho, Livia Cirino [1] ; Cunha Junior, Luis Carlos [2] ; Verbi Pereira, Fabiola Manhas [3] ; de Almeida Teixeira, Gustavo Henrique [4]
Número total de Autores: 5
Afiliação do(s) autor(es):
[1] Univ Estadual Paulista UNESP, Fac Ciencias Farmaceut FCFAR, Araraquara, SP - Brazil
[2] Univ Fed Goias, Escola Agron, Setor Horticultura, BR-74690000 Goiania, Go - Brazil
[3] Univ Estadual Paulista UNESP, Inst Quim, Araraquara, SP - Brazil
[4] Univ Estadual Paulista UNESP, FCAV, BR-14870900 Jaboticabal, SP - Brazil
Número total de Afiliações: 4
Tipo de documento: Artigo Científico
Fonte: Postharvest Biology and Technology; v. 111, p. 345-351, JAN 2016.
Citações Web of Science: 19
Resumo

The objectives of this study was to develop partial least square (PLS) models using NIR spectroscopy for the determination of SSC and firmness in intact low chilling `Aurora-1' peach fruit, and verify the influence of maturity stage and harvest season on the models to be developed (robustness). FT-NIR spectra were obtained as log 1/R with fruit harvested in 2013 at 3 maturity stages and in 2014. The spectra were collected on the background and blush colour skin areas of the each fruit. Model performance was evaluated based on the values of root mean square error for prediction (RMSEP) and coefficient of determination (RP2) obtained from validation fruit set (Kennard-Stone), and prediction fruit set (2014). PCA could not group the fruit based on blush and background skin colour, maturity stages, and harvest season. The model constructed using the external validation method obtained a RMSEVE of 1.08 % with 11 latent variables (LVS) and a R-VE(2) of 0.59. The prediction set, independent data, resulting in a less accurate model (RMSEP 1.04 %, R-p(2) 0.45 and 11 LVS). The same trend happened for determining firmness with the external validation resulting in better model with RMSEVE 9.51 N and R-VE(2) of 0.40 and the prediction set with RMSEP of 13.2 N, RP2 0.40 with 7 LVS. The NIR spectroscopy showed to be a potential analytical method to determine SSC and firmness of intact low chilling `Aurora 1' cultivar. However, it is necessary to optimize the models in other to reduce the prediction errors. (C) 2015 Elsevier B.V. All rights reserved. (AU)

Processo FAPESP: 08/51408-1 - Desenvolvimento de uma metodologia utilizando a espectroscopia do infravermelho próximo (NIRS) para a seleção e classificação de frutos íntegros de açaizeiro (Euterpe oleracea Mart.) e palmiteiro-jussara (Euterpe edulis Mart.)
Beneficiário:Gustavo Henrique de Almeida Teixeira
Modalidade de apoio: Auxílio à Pesquisa - Jovens Pesquisadores