Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

A DECOMPOSITION THEOREM FOR IMMERSIONS OF PRODUCT MANIFOLDS

Texto completo
Autor(es):
Tojeiro, Ruy
Número total de Autores: 1
Tipo de documento: Artigo Científico
Fonte: PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY; v. 59, n. 1, p. 247-269, FEB 2016.
Citações Web of Science: 2
Resumo

We introduce polar metrics on a product manifold, which have product and warped product metrics as special cases. We prove a de Rham-type theorem characterizing Riemannian manifolds that can be locally or globally decomposed as a product manifold endowed with a polar metric. For such a product manifold, our main result gives a complete description of all its isometric immersions into a space form whose second fundamental forms are adapted to its product structure in the sense that the tangent spaces to each factor are preserved by all shape operators. This is a far-reaching generalization of a basic decomposition theorem for isometric immersions of Riemannian products due to Moore as well as of its extension by Nolker to isometric immersions of warped products. (AU)

Processo FAPESP: 11/21362-2 - Ações de grupos, teoria de subvariedades, e análise global em geometria Riemanniana e pseudo-riemanniana
Beneficiário:Paolo Piccione
Modalidade de apoio: Auxílio à Pesquisa - Temático