Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Velocity-correction schemes for the incompressible Navier-Stokes equations in general coordinate systems

Texto completo
Autor(es):
Serson, D. [1, 2] ; Meneghini, J. R. [2] ; Sherwin, S. J. [1]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Univ London Imperial Coll Sci Technol & Med, Dept Aeronaut, South Kensington Campus, London SW7 2AZ - England
[2] Univ Sao Paulo, Escola Politecn, NDF, Ave Prof Mello Moraes 2231, BR-05508030 Sao Paulo - Brazil
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: Journal of Computational Physics; v. 316, p. 243-254, JUL 1 2016.
Citações Web of Science: 5
Assunto(s):Simulação numérica   Velocidade do fluxo dos fluidos   Equações de Navier-Stokes
Resumo

This paper presents methods of including coordinate transformations into the solution of the incompressible Navier-Stokes equations using the velocity-correction scheme, which is commonly used in the numerical solution of unsteady incompressible flows. This is important when the transformation leads to symmetries that allow the use of more efficient numerical techniques, like employing a Fourier expansion to discretize a homogeneous direction. Two different approaches are presented: in the first approach all the influence of the mapping is treated explicitly, while in the second the mapping terms related to convection are treated explicitly, with the pressure and viscous terms treated implicitly. Through numerical results, we demonstrate how these methods maintain the accuracy of the underlying high-order method, and further apply the discretisation strategy to problems where mixed Fourier-spectral/hp element discretisations can be applied, thereby extending the usefulness of this discretisation technique. (C) 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license. (AU)

Processo FAPESP: 14/50279-4 - Brasil Research Centre for Gas Innovation
Beneficiário:Julio Romano Meneghini
Linha de fomento: Auxílio à Pesquisa - Programa Centros de Pesquisa em Engenharia
Processo FAPESP: 12/23493-0 - Estudo numérico de asas com bordos de ataque e de fuga ondulados
Beneficiário:Douglas Serson
Linha de fomento: Bolsas no Brasil - Doutorado Direto