Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Robust probabilistic planning with ilao

Texto completo
Autor(es):
Moreira, Daniel A. M. ; Delgado, Karina Valdivia ; de Barros, Leliane Nunes
Número total de Autores: 3
Tipo de documento: Artigo Científico
Fonte: APPLIED INTELLIGENCE; v. 45, n. 3, p. 662-672, OCT 2016.
Citações Web of Science: 0
Resumo

In probabilistic planning problems which are usually modeled as Markov Decision Processes (MDPs), it is often difficult, or impossible, to obtain an accurate estimate of the state transition probabilities. This limitation can be overcome by modeling these problems as Markov Decision Processes with imprecise probabilities (MDP-IPs). Robust LAO{*} and Robust LRTDP are efficient algorithms for solving a special class of MDP-IPs where the probabilities lie in a given interval, known as Bounded-Parameter Stochastic-Shortest Path MDP (BSSP-MDP). However, they do not make clear what assumptions must be made to find a robust solution (the best policy under the worst model). In this paper, we propose a new efficient algorithm for BSSP-MDPs, called Robust ILAO{*} which has a better performance than Robust LAO{*} and Robust LRTDP, considered the-state-of-the art of robust probabilistic planning. We also define the assumptions required to ensure a robust solution and prove that Robust ILAO{*} algorithm converges to optimal values if the initial value of all states is admissible. (AU)

Processo FAPESP: 15/01587-0 - Armazenagem, modelagem e análise de sistemas dinâmicos para aplicações em e-Science
Beneficiário:João Eduardo Ferreira
Linha de fomento: Auxílio à Pesquisa - Programa eScience e Data Science - Temático