Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Unbiased Injection of Signal-Dependent Noise in Variance-Stabilized Range

Texto completo
Autor(es):
Borges, Lucas Rodrigues ; da Costa Vieira, Marcelo Andrade ; Foi, Alessandro
Número total de Autores: 3
Tipo de documento: Artigo Científico
Fonte: IEEE SIGNAL PROCESSING LETTERS; v. 23, n. 10, p. 1494-1498, OCT 2016.
Citações Web of Science: 1
Resumo

The design, optimization, and validation of many image-processing or image-based analysis systems often require testing of the system performance over a dataset of images corrupted by noise at different signal-to-noise ratio (SNR) regimes. A noise-free ground-truth image may not be available, and different SNRs are simulated by injecting extra noise into an already noisy image. However, noise in real-world systems is typically signal dependent, with variance determined by the noise-free image. Thus, the noise to be injected shall also depend on the unknown ground-truth image. To circumvent this issue, we consider the additive injection of noise in variance-stabilized range, where no previous knowledge of the ground-truth signal is necessary. Specifically, we design a special noise-injection operator that prevents the errors on expectation and variance that would otherwise arise when standard variance-stabilizing transformations are used for this task. Thus, the proposed operator is suitable for accurately injecting signal-dependent noise, even to images acquired at very low counts. (AU)

Processo FAPESP: 13/18915-5 - Proposta de redução da dose na mamografia digital pela filtragem de ruído quântico utilizando técnicas avançadas de processamento de imagens
Beneficiário:Marcelo Andrade da Costa Vieira
Modalidade de apoio: Auxílio à Pesquisa - Regular