Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Electrochemistry of the [4Fe4S] Cluster in Base Excision Repair Proteins: Tuning the Redox Potential with DNA

Texto completo
Autor(es):
Bartels, Phillip L. ; Zhou, Andy ; Arnold, Anna R. ; Nunez, Nicole N. ; Crespilho, Frank N. ; David, Sheila S. ; Barton, Jacqueline K.
Número total de Autores: 7
Tipo de documento: Artigo Científico
Fonte: Langmuir; v. 33, n. 10, p. 2523-2530, MAR 17 2017.
Citações Web of Science: 16
Resumo

Escherichia coli endonuclease III (EndoIII) and MutY are DNA glycosylases that contain {[}4Fe4S] clusters and that serve to maintain the integrity of the genome after oxidative stress. Electrochemical studies on highly oriented pyrolytic graphite (HOPG) revealed that DNA binding by EndoIII leads to a large negative shift in the midpoint potential of the cluster, consistent with stabilization of the oxidized {[}4Fe4S](3+) form. However, the smooth, hydrophobic HOPG surface is nonideal for working with proteins in the absence of DNA. In this work, we use thin film voltammetry on a pyrolytic graphite edge electrode to overcome these limitations. Improved adsorption leads to substantial signals for both EndoIII and MutY in the absence of DNA, and a large negative potential shift is retained with DNA present. In contrast, the EndoIII mutants E200K, Y205H, and K208E, which provide electrostatic perturbations in the vicinity of the cluster, all show DNA-free potentials within error of wild type; similarly, the presence of negatively charged poly-L-glutamate does not lead to a significant potential shift. Overall, binding to the DNA polyanion is the dominant effect in tuning the redox potential of the {[}4Fe4S] cluster, helping to explain why all DNA-binding proteins with {[}4Fe4S] clusters studied to date have similar DNA-bound potentials. (AU)

Processo FAPESP: 13/10516-4 - Transporte de carga em moléculas de DNA e RNA: modelagem cinética e bioeletroquímica experimental
Beneficiário:Frank Nelson Crespilho
Modalidade de apoio: Bolsas no Exterior - Pesquisa