Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Linear Minimum Mean Square Filters for Markov Jump Linear Systems

Texto completo
Autor(es):
Costa, Eduardo F. ; de Saporta, Benoite
Número total de Autores: 2
Tipo de documento: Artigo Científico
Fonte: IEEE Transactions on Automatic Control; v. 62, n. 7, p. 3567-3572, JUL 2017.
Citações Web of Science: 3
Resumo

This paper studies optimal mean square error estimation for discrete-time linear systems with observed Markov jump parameters. New linear estimators are introduced by considering a cluster information structure in the filter design. The set of filters constructed in this way can be ordered in a lattice according to the refines of clusters of the Markov chain, including the linear Markovian estimator at one end (with only one cluster) and the Kalman filter at the other end (with as many clusters as Markov states). The higher is the number of clusters, the heavier are precomputations and smaller is the estimation error for embedded sequences of partitions so that the cardinality and choice of the clusters allows for a tradeoff between performance and computational requirements. In this paper, we propose the estimator, give the formulas for precomputation of gains, present some properties, and give an illustrative numerical example. (AU)

Processo FAPESP: 13/50759-3 - Controle de sistemas dinâmicos sujeitos a saltos estocásticos
Beneficiário:Eduardo Fontoura Costa
Modalidade de apoio: Auxílio à Pesquisa - Regular