| Texto completo | |
| Autor(es): |
Rodrigues, Marcos Okamura
;
Toledo, Franklina M. B.
Número total de Autores: 2
|
| Tipo de documento: | Artigo Científico |
| Fonte: | Computers & Operations Research; v. 87, p. 221-234, NOV 2017. |
| Citações Web of Science: | 3 |
| Resumo | |
The irregular strip packing problem consists in the cutting of a set of two-dimensional pieces from an object of fixed width using the minimum possible length. Despite its economic importance for many industries, few exact studies have addressed this problem. Recently, a mixed integer programming model ill which pieces are placed on a grid has been proposed. Although the model has proved the optimality for some large instances, it has a large number of non-overlap constraints, which grows quickly according to the discretization resolution and number of distinct pieces. This paper proposes a clique covering model to reduce the number of constraints and improve the linear relaxation. The model has outperformed the previous model in most evaluated instances and obtained an optimal solution for instances with up to 25 pieces (22 distinct pieces) subject to grid discretization. (C) 2016 Elsevier Ltd. All rights reserved. (AU) | |
| Processo FAPESP: | 13/07375-0 - CeMEAI - Centro de Ciências Matemáticas Aplicadas à Indústria |
| Beneficiário: | Francisco Louzada Neto |
| Modalidade de apoio: | Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs |
| Processo FAPESP: | 10/10133-0 - Problemas de corte, empacotamento, dimensionamento de lotes e programação da produção, e suas integrações em contextos industriais e logísticos |
| Beneficiário: | Reinaldo Morabito Neto |
| Modalidade de apoio: | Auxílio à Pesquisa - Temático |
| Processo FAPESP: | 14/23900-0 - Problemas de corte e empacotamento de itens irregulares e quasi-poliominós |
| Beneficiário: | Marcos Okamura Rodrigues |
| Modalidade de apoio: | Bolsas no Brasil - Doutorado |
| Processo FAPESP: | 13/14147-3 - Modelos matemáticos para o problema de empacotamento em faixas de peças irregulares |
| Beneficiário: | Marcos Okamura Rodrigues |
| Modalidade de apoio: | Bolsas no Brasil - Mestrado |