Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Obstruction theory for coincidences of multiple maps

Texto completo
Autor(es):
Monis, Thais F. M. ; Wong, Peter
Número total de Autores: 2
Tipo de documento: Artigo Científico
Fonte: Topology and its Applications; v. 229, p. 213-225, SEP 15 2017.
Citações Web of Science: 0
Resumo

Let f(1) ,..., f(k) : X -> N be maps from a complex X to a compact manifold N, k >= 2. In previous works {[}1,12], a Lefschetz type theorem was established so that the non-vanishing of a Lefschetz type coincidence class L(f(1), f(k)) implies the existence of a coincidence x is an element of X such that f(1)(x) = ... = f(k)(x). In this paper, we investigate the converse of the Lefschetz coincidence theorem for multiple maps. In particular, we study the obstruction to deforming the maps f(1),...,f(k) to be coincidence free. We construct an example of two maps f(1), f(2) : M -> T from a sympletic 4-manifold M to the 2-torus T such that f(1) and f(2) cannot be homotopic to coincidence free maps but for any f : M -> T, the maps f(1), f(2), f are deformable to be coincidence free. (C) 2017 Elsevier B.V. All rights reserved. (AU)

Processo FAPESP: 14/17609-0 - Teoria de obstrução para coincidências entre múltiplas aplicações
Beneficiário:Thaís Fernanda Mendes Monis
Modalidade de apoio: Auxílio à Pesquisa - Regular