Um marcador de biópsia líquida em potencial: estudo in vitro e in vivo do papel pa...
Implementação do modelo de aerossóis no modelo brasileiro de sistema terrestre (BE...
Texto completo | |
Autor(es): |
Número total de Autores: 2
|
Afiliação do(s) autor(es): | [1] Univ Sao Paulo, Inst Matemat & Estat, Dept Matemat Aplicada, Sao Paulo - Brazil
[2] Roskilde Univ, INM, DK-4000 Roskilde - Denmark
Número total de Afiliações: 2
|
Tipo de documento: | Artigo Científico |
Fonte: | INVENTIONES MATHEMATICAE; v. 210, n. 2, p. 615-644, NOV 2017. |
Citações Web of Science: | 0 |
Resumo | |
Douady and Hubbard (Ann Sci Ec Norm Suppl 4 18(2):287-343, 1985) introduced the notion of polynomial-like maps. They used it to identify homeomorphic copies of the Mandelbrot set inside the Mandelbrot set . These copies can be primitive (with a root cusp) or satellite (without a root cusp). They conjectured that the primitive copies are quasiconformally homeomorphic to , and that the satellite ones are quasiconformally homeomorphic to outside any small neighbourhood of the root. These conjectures are now Theorems due to Lyubich (Ann Math 149:319-420, 1999). The satellite copies are clearly not q-c homeomorphic to . But are they mutually q-c homeomorphic? Or even q-c homeomorphic to half of the logistic Mandelbrot set? In this paper we prove that, in general, the induced Douady-Hubbard homeomorphism is not the restriction of a q-c homeomorphism: For any two satellite copies and the induced Douady-Hubbard homeomorphism is not q-c if the root multipliers and have . (AU) | |
Processo FAPESP: | 13/20480-7 - Fenômenos parabólicos em dinâmica complexa |
Beneficiário: | Luciana Luna Anna Lomonaco |
Modalidade de apoio: | Bolsas no Brasil - Pós-Doutorado |