Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Score normalization applied to adaptive biometric systems

Texto completo
Autor(es):
Pisani, Paulo Henrique [1] ; Poh, Norman [2] ; de Carvalho, Andre C. P. L. F. [1] ; Lorena, Ana Carolina [3]
Número total de Autores: 4
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Inst Ciencias Matemat & Comp, Av Trabalhador Sao Carlense 400, Sao Carlos, SP - Brazil
[2] Univ Surrey, Dept Comp, Fac Engn & Phys Sci, Guildford, Surrey - England
[3] Univ Fed Sao Paulo, Inst Ciencia & Tecnol, Rua Talim 330, Sao Jose Dos Campos - Brazil
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: COMPUTERS & SECURITY; v. 70, p. 565-580, SEP 2017.
Citações Web of Science: 2
Resumo

Biometric authentication systems have certain limitations. Recent studies have shown that biometric features may change over time, which can entail a decrease in recognition performance of the biometric system. An adaptive biometric system addresses this problem by adapting the biometric reference/template over time, thereby tracking the changes automatically. However, the use of these systems usually requires the adoption of a high threshold value to avoid the inclusion of impostor patterns into the genuine biometric reference. In this study, we hypothesize that score normalization procedures, which have been used to improve the recognition performance of biometric systems through a better refinement of their decision, can also improve the overall performance of adaptive systems. With such a normalization, a better threshold choice could also be made, which would then increase the number of genuine samples used for adaptation. To the best of our knowledge, this is the first investigation towards the use of score normalization to enhance adaptive biometric systems dealing with the change of user features over time. Through a systematic experimental design tested on two behavioral biometric traits, the obtained results indeed support our conjecture. Moreover, the experimental results show that the performance gain brought by adaptation can have a higher overall impact than score normalization alone. (C) 2017 Elsevier Ltd. All rights reserved. (AU)

Processo FAPESP: 12/22608-8 - Uso de medidas de complexidade de dados no suporte ao aprendizado de máquina supervisionado
Beneficiário:Ana Carolina Lorena
Modalidade de apoio: Auxílio à Pesquisa - Jovens Pesquisadores
Processo FAPESP: 13/07375-0 - CeMEAI - Centro de Ciências Matemáticas Aplicadas à Indústria
Beneficiário:Francisco Louzada Neto
Modalidade de apoio: Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs
Processo FAPESP: 12/25032-0 - Biometria em um Contexto de Fluxo de Dados com Algoritmos Imunológicos
Beneficiário:Paulo Henrique Pisani
Modalidade de apoio: Bolsas no Brasil - Doutorado