Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Global solvability and global hypoellipticity in Gevrey classes for vector fields on the torus

Texto completo
Autor(es):
Bergamasco, A. P. [1] ; Dattori da Silva, P. L. [1] ; Gonzalez, R. B. [2]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Inst Ciencias Matemat & Comp, Dept Matemat, Caixa Postal 668, BR-13560970 Sao Carlos, SP - Brazil
[2] Univ Fed Parana, Dept Matemat, Caixa Postal 19081, BR-81531990 Curitiba, Parana - Brazil
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: Journal of Differential Equations; v. 264, n. 5, p. 3500-3526, MAR 1 2018.
Citações Web of Science: 1
Resumo

Let L = partial derivative/partial derivative t + Sigma(N)(j=1) (a(j)+ib(j)) (t) partial derivative/partial derivative x(j) be a vector field defined on the torus TN+1 similar or equal to RN+1 /2 Pi Z(N+1,) where a(j),b(j) are real-valued functions and belonging to the Gevrey class G(s)(T-1), s > 1, for j= 1,..., N. We present a complete characterization for the s-global solvability and s-global hypoellipticity of L. Our results are linked to Diophantine properties of the coefficients and, also, connectedness of certain sublevel sets. (C) 2017 Elsevier Inc. All rights reserved. (AU)

Processo FAPESP: 12/03168-7 - Teoria geométrica de EDP e várias variáveis complexas
Beneficiário:Jorge Guillermo Hounie
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 15/20815-4 - Resolubilidade e hipoeliticidade de operadores diferenciais parciais de primeira ordem e o problema de Riemann-Hilbert
Beneficiário:Paulo Leandro Dattori da Silva
Modalidade de apoio: Auxílio à Pesquisa - Regular