Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Fuzzy approach for classification of pork into quality grades: coping with unclassifiable samples

Texto completo
Autor(es):
Peres, Louise Manha [1] ; Barbon, Jr., Sylvio [2] ; Fuzyi, Estelania Mayumi [3] ; Barbon, Ana Paula A. C. [1] ; Barbin, Douglas Fernandes [4] ; Maeda Saito, Priscila Tiemi [5] ; Andreo, Nayara [1] ; Bridi, Ana Maria [1]
Número total de Autores: 8
Afiliação do(s) autor(es):
[1] Londrina State Univ UEL, Dept Anim Sci, BR-86057970 Londrina - Brazil
[2] Londrina State Univ UEL, Dept Comp Sci, BR-86057970 Londrina - Brazil
[3] Pontificia Univ Catolica Parana PUCPR, Dept Inf, BR-80215901 Curitiba, Parana - Brazil
[4] Campinas State Univ UNICAMP, Dept Food Engn, BR-13083862 Campinas, SP - Brazil
[5] Fed Univ Tecn Parana UTFPR, Dept Comp, BR-86300000 Cornelio Procopio - Brazil
Número total de Afiliações: 5
Tipo de documento: Artigo Científico
Fonte: COMPUTERS AND ELECTRONICS IN AGRICULTURE; v. 150, p. 455-464, JUL 2018.
Citações Web of Science: 1
Resumo

Meat classification methods are commonly based on quality parameters standardized by numeric ranges. However, some animal samples from different production chains do not match the current grades proposed. These unclassifiable samples are not capable to fit into a standard created by crisp range of values due to being infeasible toward its definition. An alternative to handle this kind of sample classification is the fuzzy logic, which could deal with uncertainty and ambiguity degree like human reasoning. In this work, we compare the traditional classification method and fuzzy approaches with the objective to handle the infeasible samples. This was compared to traditional pork standards using eleven real-life datasets with a total of 1798 samples described by pH, water holding capacity and/or L{*} value. The results demonstrated that traditional classification could not predict the unclassifiable samples. On the other hand, the fuzzy approaches improve significantly the number of classified samples. Performance of the fuzzy approaches were compared with several machine learning algorithms, but no significant statistical difference was observed. Finally, a real-life study case was explored, highlighting some advantages and further achievements of the fuzzy modeling. (AU)

Processo FAPESP: 15/24351-2 - Análise de imagens e espectroscopia de infravermelho próximo (NIR) na avaliação de qualidade e autenticação de alimentos
Beneficiário:Douglas Fernandes Barbin
Modalidade de apoio: Auxílio à Pesquisa - Jovens Pesquisadores