Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Continuous solutions for divergence-type equations associated to elliptic systems of complex vector fields

Texto completo
Autor(es):
Moonens, Laurent [1] ; Picon, Tiago [2]
Número total de Autores: 2
Afiliação do(s) autor(es):
[1] Univ Paris Saclay, Lab Math UMR 8628, Univ Paris Sud, Batiment 307, F-91405 Orsay - France
[2] Univ Sao Paulo, Fac Filosofia Ciencias & Letras Ribeirao Preto, Dept Computacao & Matemat, Ave Bandeirantes 3900, BR-14040901 Ribeirao Preto - Brazil
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: JOURNAL OF FUNCTIONAL ANALYSIS; v. 275, n. 5, p. 1073-1099, SEP 1 2018.
Citações Web of Science: 0
Resumo

In this paper, we characterize all the distributions F is an element of D'(U) such that there exists a continuous weak solution upsilon is an element of C(U, C-n) (with U subset of Omega ) to the divergence-type equation L-1{*}upsilon(1) + ... + L-n{*}upsilon(n) = F-1 where [L-1 , ..., L-n] is an elliptic system of linearly independent vector fields with smooth complex coefficients defined on Omega subset of R-N. In case where (L-1 , ..., L-n) is the usual gradient field on R-N, we recover the classical result for the divergence equation proved by T. De Pauw and W. Pfeffer. Its proof is based on the closed range theorem and inspired by {[}3] and {[}6] in the classical case. Our method slightly differs from theirs by relying on the Banach-Grothendieck theorem and introducing tools from pseudodifferential operators, useful in our local setting of a system of complex vector fields with variable coefficients. (C) 2018 Elsevier Inc. All rights reserved. (AU)

Processo FAPESP: 13/17636-5 - Estimativas a priori para complexos elíticos e aplicações
Beneficiário:Tiago Henrique Picon
Modalidade de apoio: Auxílio à Pesquisa - Jovens Pesquisadores