Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Existence and Multiplicity of Solutions for a Class of Elliptic Equations Without Ambrosetti-Rabinowitz Type Conditions

Texto completo
Autor(es):
Juarez Hurtado, E. [1] ; Miyagaki, O. H. [2] ; Rodrigues, R. S. [1]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Univ Fed Sao Carlos, Dept Math, BR-13565905 Sao Carlos, SP - Brazil
[2] Univ Fed Juiz de Fora, Dept Math, BR-36036330 Juiz De Fora, MG - Brazil
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: Journal of Dynamics and Differential Equations; v. 30, n. 2, p. 405-432, JUN 2018.
Citações Web of Science: 1
Resumo

In this paper we establish, using variational methods, the existence and multiplicity of weak solutions for a general class of quasilinear problems involving -Laplace type operators, with Dirichlet boundary conditions involving variable exponents without Ambrosetti and Rabinowitz (A-R) type growth conditions, namely [- div(a(vertical bar del u vertical bar(p(x)))vertical bar del u vertical bar(p(x)-2)del vertical bar del u) - lambda f(x, u) in Omega u = 0 on partial derivative Omega. By different types of versions of the Mountain Pass Theorem with Cerami condition, as well as, the Fountain and Dual Theorem with Cerami condition, we obtain some existence of weak solutions for the above problem under some considerations. Moreover, we show that the problem treated has at least one nontrivial solution for any parameter small enough, and also that the solution blows up, in the Sobolev norm, as Finally, by imposing additional hypotheses on the nonlinearity we get the existence of infinitely many weak solutions by using the Genus Theory introduced by Krasnoselskii. (AU)

Processo FAPESP: 15/11912-6 - Existência de solução para problemas elípticos
Beneficiário:Rodrigo da Silva Rodrigues
Modalidade de apoio: Auxílio à Pesquisa - Regular