Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Spatio-Temporal Segmentation Applied to Optical Remote Sensing Image Time Series

Texto completo
Autor(es):
Costa, Wanderson Santos [1] ; Garcia Fonseca, Leila Maria [1] ; Korting, Thales Sehn [1] ; Bendini, Hugo do Nascimento [1] ; Modesto de Souza, Ricardo Cartaxo [1]
Número total de Autores: 5
Afiliação do(s) autor(es):
[1] Natl Inst Space Res, Earth Observat Gen Coordinat, BR-12227010 Sao Jose Dos Campos - Brazil
Número total de Afiliações: 1
Tipo de documento: Artigo Científico
Fonte: IEEE Geoscience and Remote Sensing Letters; v. 15, n. 8, p. 1299-1303, AUG 2018.
Citações Web of Science: 0
Resumo

The availability of a large amount of remote sensing data made Earth Observation increasingly accessible and detailed. High temporal and spatial resolution sensors are responsible for making available data sets of time series in unprecedented proportions. Within this context, the use of efficient segmentation algorithms of remote sensing imagery represents an important role in this scenario, because they provide homogeneous regions in space-time and hence simplify the data set. In addition, the spatio-temporal segmentation can bring a new way of interpreting data by means of analyzing contiguous regions in time. This letter describes a method for image segmentation applied to time series of the Earth Observation data. We adapted the traditional region growing method to detect homogeneous regions in space and time. Study cases were conducted by considering the dynamic time warping algorithm as the homogeneity criterion to grow regions. Tests on high temporal resolution image sequences from Moderate Resolution Imaging Spectroradiometer and Landsat-8 Operational Land Imager vegetation indices and comparisons with other distance measurements provided satisfactory outcomes. (AU)

Processo FAPESP: 14/08398-6 - E-Sensing: análise de grandes volumes de dados de observação da terra para informação de mudanças de uso e cobertura da terra
Beneficiário:Gilberto Camara Neto
Linha de fomento: Auxílio à Pesquisa - Programa eScience e Data Science - Temático