Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

AN EXTENSION OF THE CONCEPT OF EXPONENTIAL DICHOTOMY IN FRECHET SPACES WHICH IS STABLE UNDER PERTURBATION

Texto completo
Autor(es):
Aragao Costa, Eder Ritas
Número total de Autores: 1
Tipo de documento: Artigo Científico
Fonte: COMMUNICATIONS ON PURE AND APPLIED ANALYSIS; v. 18, n. 2, p. 845-868, MAR 2019.
Citações Web of Science: 0
Resumo

In this paper we prove versions, in Frechet spaces, of the classical theorems related to exponential dichotomy for a sequence of continuous linear operators on Banach spaces. To be more specific, here we define a kind of exponential dichotomy in Frechet spaces, which extends the former one in Banach spaces, establish necessary conditions for its existence and provide sufficient conditions for its stability under perturbation. We apply the conclusions by providing an example of a semigroup of bounded linear operators, on a Frechet space, which has this new exponential dichotomy but does not in Banach spaces, namely, [e(m Delta) : m epsilon N], where Delta is the Laplace operator on the unbounded domain R-n \textbackslash{}[0]. Also, we show how these new concepts allow us to study a hyperbolic equilibrium point of a backwards heat equation with nonlinearity involving convolution products, which cannot be obtained from the knowledge of exponential dichotomy in Banach spaces. (AU)

Processo FAPESP: 14/02899-3 - Resolubilidade global para complexos diferenciais e recíproca para o teorema de existência de função de Lyapunov não autônoma para processos de evolução de tipo gradiente
Beneficiário:Éder Ritis Aragão Costa
Modalidade de apoio: Auxílio à Pesquisa - Regular