Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

k-Jet field approximations to geodesic deviation equations

Texto completo
Autor(es):
Torrome, Ricardo Gallego [1] ; Gratus, Jonathan [2, 3]
Número total de Autores: 2
Afiliação do(s) autor(es):
[1] Univ Fed Sao Carlos, Dept Matemat, Sao Carlos, SP - Brazil
[2] Cockcroft Inst, Warrington, Cheshire - England
[3] Univ Lancaster, Phys Dept, Lancaster LA1 4YB - England
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS; v. 15, n. 12 DEC 2018.
Citações Web of Science: 0
Resumo

Let M be a smooth manifold and S a semi-spray defined on a sub-bundle C of the tangent bundle TM. In this work, it is proved that the only non-trivial k-jet approximation to the exact geodesic deviation equation of S, linear on the deviation functions and invariant under an specific class of local coordinate transformations, is the Jacobi equation. However, if the linearity property on the dependence in the deviation functions is not imposed, then there are differential equations whose solutions admit k-jet approximations and are invariant under arbitrary coordinate transformations. As an example of higher-order geodesic deviation equations, we study the first- and second-order geodesic deviation equations for a Finsler spray. (AU)

Processo FAPESP: 10/11934-6 - Aspetos globais in geometria Finsler e Lorentziana
Beneficiário:Ricardo Gallego Torrome
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado