Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Damping and clustering into crowded environment of catalytic chemical oscillators

Texto completo
Autor(es):
Echeverria, Carlos [1] ; Herrera, Jose L. [2, 1] ; Alvarez-Llamoza, Orlando [3] ; Morales, Miguel [4] ; Tucci, Kay [1, 5]
Número total de Autores: 5
Afiliação do(s) autor(es):
[1] Univ Los Andes, Fac Ingn, CeSiMo, Merida 5101 - Venezuela
[2] IFT UNESP, ICTP South Amer Inst Fundamental Res, BR-01440070 Sao Paulo, SP - Brazil
[3] Univ Catalica Cuenca, Grp Invest Simulac Modelado Anal & Accesibilidad, Cuenca 010105 - Ecuador
[4] Univ Politecn Sinaloa, Unidad Acad Ingn Nanotecnol, Mazatlan 82199, Sinaloa - Mexico
[5] Univ Los Andes, Fac Ciencias, SUMA, Merida 5101 - Venezuela
Número total de Afiliações: 5
Tipo de documento: Artigo Científico
Fonte: PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS; v. 517, p. 297-306, MAR 1 2019.
Citações Web of Science: 0
Resumo

A system formed by a crowded environment of catalytic obstacles and complex oscillatory chemical reactions is studied. The obstacles are static spheres of equal radius, which are placed in a random way. The chemical reactions are carried out in a fluid following a multiparticle collision scheme where the mass, energy and local momentum are conserved. Firstly, it is explored how the presence of catalytic obstacles changes the oscillatory dynamics from a limit cycle to a fixed point reached after a damping. The damping is characterized by the decay constant, which grows linearly with volume fraction for low values of the mesoscale collision time and the catalytic reaction constant. Additionally, it is shown that, although the distribution of obstacles is random, there are regions in the system where the catalytic chemical reactions are favored. This entails that in average the radius of gyrations of catalytic chemical reaction does not match with the radius of gyration of obstacles, that is, clusters of reactions emerge on the catalytic obstacles, even when the diffusion is significant. (C) 2018 Elsevier B.V. All rights reserved. (AU)

Processo FAPESP: 17/00344-2 - Aproximação de redes complexas para análise de séries temporais
Beneficiário:Jose Luis Herrera Diestra
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado
Processo FAPESP: 16/01343-7 - ICTP Instituto Sul-Americano para Física Fundamental: um centro regional para física teórica
Beneficiário:Nathan Jacob Berkovits
Modalidade de apoio: Auxílio à Pesquisa - Projetos Especiais