Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Portable NIR Spectrometer for Prediction of Palm Oil Acidity

Texto completo
Autor(es):
Kaufmann, Karine Cristine [1] ; Favero, Flavia de Faveri [1] ; Marcal de Vasconcelos, Marcus Arthur [2] ; Godoy, Helena Teixeira [2] ; Sampaio, Klicia Araujo [1] ; Barbin, Douglas Fernandes [1]
Número total de Autores: 6
Afiliação do(s) autor(es):
[1] Univ Campinas UNICAMP, Dept Food Engn, Rua Monteiro Lobato 80 Cidade Univ Zeferino Vaz, BR-13083862 Campinas, SP - Brazil
[2] Univ Campinas UNICAMP, Dept Food Sci, Rua Monteiro Lobato 80 Cidade Univ Zeferino Vaz, BR-13083862 Campinas, SP - Brazil
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: Journal of Food Science; v. 84, n. 3, p. 406-411, MAR 2019.
Citações Web of Science: 0
Resumo

Palm oil is widely used in the food industry, and its quality is associated with the free fatty acids (FFA) content. Determination of FFA in oil is time-consuming, requires chemicals and generates residues. There is a trend of applying process analytical technologies (PAT) for fast and nondestructive determination of oil parameters. Portable near-infrared (NIR) spectrometers are cheaper than bench top equipment, and have been used for several tasks in the food processing industry, as it provides fast and reliable data for inline measurements. This study investigated the use of NIR spectra using a portable equipment, combined with both unsupervised and supervised multivariate analyses for identification of palm oil samples with different levels of FFA. Soft independent modeling of class analogy , k-Nearest Neighbors, and linear discriminant analysis models were able to correctly identify 100% of the studied samples with selected wavelengths from NIR spectra. Calibration models were performed for acidity prediction, achieving R-2 = 0.97, with root mean square error of prediction = 4.37 for partial least squares model using most relevant wavelengths. These results demonstrate the feasibility of applying a low-cost portable NIR spectrophotometer to predict quality parameters of palm oil. (AU)

Processo FAPESP: 14/21252-0 - Equilíbrio e processos de produção de biocombustíveis e bioprodutos
Beneficiário:Antonio José de Almeida Meirelles
Linha de fomento: Auxílio à Pesquisa - Temático
Processo FAPESP: 15/24351-2 - Análise de imagens e espectroscopia de infravermelho próximo (NIR) na avaliação de qualidade e autenticação de alimentos
Beneficiário:Douglas Fernandes Barbin
Linha de fomento: Auxílio à Pesquisa - Apoio a Jovens Pesquisadores