Detecting and tracking leukocytes in intravital vi... - BV FAPESP
Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Detecting and tracking leukocytes in intravital video microscopy using a Hessian-based spatiotemporal approach

Texto completo
Autor(es):
Gregorio da Silva, Bruno C. [1] ; Carvalho-Tavares, Juliana [2] ; Ferrari, Ricardo J. [1]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Univ Fed Sao Carlos, Dept Comp, Sao Carlos, SP - Brazil
[2] Univ Fed Minas Gerais, Dept Physiol & Biophys, Belo Horizonte, MG - Brazil
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING; v. 30, n. 2, p. 815-839, APR 2019.
Citações Web of Science: 0
Resumo

The leukocyte recruitment analysis is an important step to understand the interactions between leukocytes and endothelial cells in the microcirculation of living animals. Performed preferably by the intravital video microscopy technique, this procedure usually requires an expert visual analysis, which is prone to the inter- and intra-observer variability. Such problem claims, therefore, an automated method to detect and track these cells. To this end, we developed an approach that combines two different analyses: in the first (2D), all video frames are individually processed by using a blob-like structure detector to find the leukocyte centroids, while in the second (2D+t), a spatiotemporal image (created by stacking all video frames) is processed by a tubular-like structure detector, which is used to determine the leukocyte trajectories over time. For both analyses, the detectors are based on the relationship between Hessian matrix eigenvalues locally obtained from image sequences. Evaluation of the proposed approach was conducted by comparing our technique to the manual annotations using precision, recall and F1-score measures in two video sequences. The average results for these measures were, respectively, 0.84, 0.64, and 0.72 for the first video, and 0.84, 0.87, and 0.86 for the second. These results suggested that our proposed approach is comparable with manual annotations performed by the experts and has an excellent potential for use in real circumstances. Moreover, it can reduce the observer variabilities and the burden for visual analysis. (AU)

Processo FAPESP: 15/02232-1 - Segmentação automática de imagens de ressonância magnética do cérebro humano via modelos deformáveis guiados por atlas probabilístico de pontos salientes 3D
Beneficiário:Ricardo José Ferrari
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 13/26171-6 - Detecção e rastreamento de leucócitos em imagens de microscopia intravital via processamento espaço-temporal
Beneficiário:Bruno César Gregório da Silva
Modalidade de apoio: Bolsas no Brasil - Mestrado