Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Extended Relativistic Toda Lattice, L-Orthogonal Polynomials and Associated Lax Pair

Texto completo
Autor(es):
Bracciali, Cleonice F. [1] ; Silva, Jairo S. [2] ; Ranga, A. Sri [1]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] UNESP Univ Estadual Paulista, Dept Matemat Aplicada, BR-15054000 Sao Jose Do Rio Preto, SP - Brazil
[2] Univ Fed Maranhao, Dept Matemat, BR-65080805 Sao Luis, MA - Brazil
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: ACTA APPLICANDAE MATHEMATICAE; v. 164, n. 1, p. 137-154, DEC 2019.
Citações Web of Science: 0
Resumo

When a measure psi(x), then the coefficients of the recurrence relation of the orthogonal polynomials in x are known to satisfy the so-called Toda lattice formulas as functions of t. In this paper we consider a modification of the form e-t(px+q/x) of measures or, more generally, of moment functionals, associated with orthogonal L-polynomials and show that the coefficients of the recurrence relation of these L-orthogonal polynomials satisfy what we call an extended relativistic Toda lattice. Most importantly, we also establish the so called Lax pair representation associated with this extended relativistic Toda lattice. These results also cover the (ordinary) relativistic Toda lattice formulations considered in the literature by assuming either p=0. However, as far as Lax pair representation is concern, no complete Lax pair representations were established before for the respective relativistic Toda lattice formulations. Some explicit examples of extended relativistic Toda lattice and Langmuir lattice are also presented. As further results, the lattice formulas that follow from the three term recurrence relations associated with kernel polynomials on the unit circle are also established. (AU)

Processo FAPESP: 17/12324-6 - Polinômios ortogonais no círculo unitário e estudos relacionados
Beneficiário:Alagacone Sri Ranga
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 16/09906-0 - Análise harmônica, teoria da aproximação, funções especiais e aplicações
Beneficiário:Dimitar Kolev Dimitrov
Modalidade de apoio: Auxílio à Pesquisa - Temático