Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Laws of large numbers for the frog model on the complete graph

Texto completo
Autor(es):
Lebensztayn, Elcio [1] ; Estrada, Mario Andres [2]
Número total de Autores: 2
Afiliação do(s) autor(es):
[1] Univ Campinas UNICAMP, Inst Math Stat & Sci Computat, Rua Sergio Buarque Holanda 651, BR-13083859 Campinas, SP - Brazil
[2] Fed Univ Pernambuco UFPE, Dept Stat, Ave Prof Luiz Freire S-N, BR-50740540 Recife, PE - Brazil
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: Journal of Mathematical Physics; v. 60, n. 12 DEC 1 2019.
Citações Web of Science: 0
Resumo

The frog model is a stochastic model for the spreading of an epidemic on a graph in which a dormant particle starts to perform a simple random walk on the graph and to awaken other particles once it becomes active. We study two versions of the frog model on the complete graph with N + 1 vertices. In the first version that we consider, active particles have geometrically distributed lifetimes. In the second version, the displacement of each awakened particle lasts until it hits a vertex already visited by the process. For each model, we prove that as N -> infinity, the trajectory of the process is well approximated by a three-dimensional discrete-time dynamical system. We also study the long-term behavior of the corresponding deterministic systems. (AU)

Processo FAPESP: 17/10555-0 - Modelagem estocástica de sistemas interagentes
Beneficiário:Fabio Prates Machado
Modalidade de apoio: Auxílio à Pesquisa - Temático