Busca avançada
Ano de início
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Centrality anomalies in complex networks as a result of model over-simplification

Texto completo
Alves, Luiz G. A. [1, 2] ; Aleta, Alberto [3, 4] ; Rodrigues, Francisco A. [1, 5, 6] ; Moreno, Yamir [3, 4, 7] ; Amaral, Luis A. Nunes [8, 2, 9]
Número total de Autores: 5
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Inst Math & Comp Sci, BR-13566590 Sao Carlos, SP - Brazil
[2] Northwestern Univ, Dept Chem & Biol Engn, Evanston, IL 60208 - USA
[3] Univ Zaragoza, Inst Biocomputat & Phys Complex Syst BIFI, E-50009 Zaragoza - Spain
[4] Univ Zaragoza, Dept Theoret Phys, E-50009 Zaragoza - Spain
[5] Univ Warwick, Ctr Complex Sci, Coventry CV4 7AL, W Midlands - England
[6] Univ Warwick, Math Inst, Gibbet Hill Rd, Coventry CV4 7AL, W Midlands - England
[7] ISI Fdn, I-10126 Turin - Italy
[8] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 - USA
[9] Northwestern Univ, Northwestern Inst Complex Syst NICO, Evanston, IL 60208 - USA
Número total de Afiliações: 9
Tipo de documento: Artigo Científico
Fonte: NEW JOURNAL OF PHYSICS; v. 22, n. 1 JAN 2020.
Citações Web of Science: 0

Tremendous advances have been made in our understanding of the properties and evolution of complex networks. These advances were initially driven by information-poor empirical networks and theoretical analysis of unweighted and undirected graphs. Recently, information-rich empirical data complex networks supported the development of more sophisticated models that include edge directionality and weight properties, and multiple layers. Many studies still focus on unweighted undirected description of networks, prompting an essential question: how to identify when a model is simpler than it must be? Here, we argue that the presence of centrality anomalies in complex networks is a result of model over-simplification. Specifically, we investigate the well-known anomaly in betweenness centrality for transportation networks, according to which highly connected nodes are not necessarily the most central. Using a broad class of network models with weights and spatial constraints and four large data sets of transportation networks, we show that the unweighted projection of the structure of these networks can exhibit a significant fraction of anomalous nodes compared to a random null model. However, the weighted projection of these networks, compared with an appropriated null model, significantly reduces the fraction of anomalies observed, suggesting that centrality anomalies are a symptom of model over-simplification. Because lack of information-rich data is a common challenge when dealing with complex networks and can cause anomalies that misestimate the role of nodes in the system, we argue that sufficiently sophisticated models be used when anomalies are detected. (AU)

Processo FAPESP: 16/25682-5 - Propagação de informação em redes complexas
Beneficiário:Francisco Aparecido Rodrigues
Linha de fomento: Auxílio à Pesquisa - Regular
Processo FAPESP: 13/07375-0 - CeMEAI - Centro de Ciências Matemáticas Aplicadas à Indústria
Beneficiário:José Alberto Cuminato
Linha de fomento: Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs