Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Quantitative symmetry breaking of groundstates for a class of weighted Emden-Fowler equations

Texto completo
Autor(es):
Mercuri, Carlo [1] ; dos Santos, Ederson Moreira [1]
Número total de Autores: 2
Afiliação do(s) autor(es):
[1] Swansea Univ, Dept Math, Computat Foundry, Fabian Way, Swansea SA1 8EN, W Glam - Wales
Número total de Afiliações: 1
Tipo de documento: Artigo Científico
Fonte: Nonlinearity; v. 32, n. 11, p. 4445-4464, NOV 2019.
Citações Web of Science: 0
Resumo

We consider a class of weighted Emden-Fowler equations [-Delta u = V-alpha(x)u(p) in B, u > 0 in B, (P-alpha) u = 0 on partial derivative B, posed on the unit ball B = B(0, 1) subset of R-N, N >= 1. We prove that symmetry breaking occurs for the groundstate solutions as the parameter alpha -> infinity. The above problem reads as a possibly large perturbation of the classical Henon equation. We consider a radial function V-alpha having a spherical shell of zeroes at vertical bar x vertical bar = R is an element of (0, 1]. For N >= 3, a quantitative condition on R for this phenomenon to occur is given by means of universal constants, such as the best constant for the subcritical Sobolev's embedding H-0(1)(B) subset of Lp+1(B). In the case N = 2 we highlight a similar phenomenon when R = R(alpha) is a function with a suitable decay. Moreover, combining energy estimates and Liouville type theorems we study some qualitative and quantitative properties of the groundstate solutions to (P-alpha) as alpha -> infinity. (AU)

Processo FAPESP: 15/17096-6 - Problemas em EDPs elípticas: sistemas e equações
Beneficiário:Ederson Moreira dos Santos
Modalidade de apoio: Auxílio à Pesquisa - Regular