Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

On a class of immersions of spheres into space forms of nonpositive curvature

Texto completo
Autor(es):
Zuhlke, Pedro
Número total de Autores: 1
Tipo de documento: Artigo Científico
Fonte: Geometriae Dedicata; v. 205, n. 1, p. 95-112, APR 2020.
Citações Web of Science: 0
Resumo

Let Mn+1 (n = 2) be a simply-connected space form of sectional curvature -.2 for some. = 0, and I an interval not containing {[}-.,.] in its interior. It is known that the domain of a closed immersed hypersurface of M whose principal curvatures lie in I must be diffeomorphic to the n-sphere Sn. These hypersurfaces are thus topologically rigid. The purpose of this paper is to show that they are also homotopically rigid. More precisely, for fixed I, the space F of all such hypersurfaces is either empty or weakly homotopy equivalent to the group of orientation-preserving diffeomorphisms of Sn. An equivalence assigns to each element of F a suitable modification of its Gauss map. For M not simply-connected, F is the quotient of the corresponding space of hypersurfaces of the universal cover of M by a natural free proper action of the fundamental group of M. (AU)

Processo FAPESP: 14/22556-3 - Geometria de subvariedades isoparamétricas do espaço de Hilbert e topologia de espaços de curvas com curvatura limitada em superfícies.
Beneficiário:Pedro Paiva Zühlke d'Oliveira
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado