Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Crystal structure of Thermus thermophilus methylenetetrahydrofolate dehydrogenase and determinants of thermostability

Texto completo
Autor(es):
Maiello, Fernando [1] ; Gallo, Gloria [1] ; Coelho, Camila [1] ; Sucharski, Fernanda [1] ; Hardy, Leon [2] ; Wurtele, Martin [1]
Número total de Autores: 6
Afiliação do(s) autor(es):
[1] Univ Fed Sao Paulo, Dept Sci & Technol, Sao Jose Dos Campos - Brazil
[2] Univ S Florida, Dept Phys, Tampa, FL 33620 - USA
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: PLoS One; v. 15, n. 5 MAY 13 2020.
Citações Web of Science: 0
Resumo

The elucidation of mechanisms behind the thermostability of proteins is extremely important both from the theoretical and applied perspective. Here we report the crystal structure of methylenetetrahydrofolate dehydrogenase (MTHFD) from Thermus thermophilus HB8, a thermophilic model organism. Molecular dynamics trajectory analysis of this protein at different temperatures (303 K, 333 K and 363 K) was compared with homologous proteins from the less temperature resistant organism Thermoplasma acidophilum and the mesophilic organism Acinetobacter baumannii using several data reduction techniques like principal component analysis (PCA), residue interaction network (RIN) analysis and rotamer analysis. These methods enabled the determination of important residues for the thermostability of this enzyme. The description of rotamer distributions by Gini coefficients and Kullback-Leibler (KL) divergence both revealed significant correlations with temperature. The emerging view seems to indicate that a static salt bridge/charged residue network plays a fundamental role in the temperature resistance of Thermus thermophilus MTHFD by enhancing both electrostatic interactions and entropic energy dispersion. Furthermore, this analysis uncovered a relationship between residue mutations and evolutionary pressure acting on thermophilic organisms and thus could be of use for the design of future thermostable enzymes. (AU)

Processo FAPESP: 11/50963-4 - Biologia estrutural de proteinas processadoras de acidos nucleicos em bacterias com elevada relevancia biomedica
Beneficiário:Martin Rodrigo Alejandro Wurtele Alfonso
Modalidade de apoio: Auxílio à Pesquisa - Regular